A flexible manipulator is a versatile automated device with a wide range of applications, capable of performing various tasks. However, these manipulators are often vulnerable to external disturbances and face limitations in their ability to control actuators. These factors significantly impact the precision of tracking control in such systems. This study delves into the problem of attitude tracking control for a flexible manipulator under the constraints of control input limitations and the influence of external disturbances. To address these challenges effectively, we first introduce the backstepping method, aiming to achieve precise state tracking and tackle the issue of external disturbances. Additionally, recognizing the constraints posed by control input limitations in the flexible manipulator's actuator control system, we employ a design approach based on the Nussbaum function. This method is designed to overcome these limitations, allowing for more robust control. To validate the effectiveness and disturbance rejection capabilities of the proposed control strategy, we conduct comparative numerical simulations using MATLAB/Simulink. These simulations provide further evidence of the robustness and reliability of the control strategy, even in the presence of external disturbances and control input limitations.
Citation: Jia Tan, ShiLong Chen, ZhengQiang Li. Robust tracking control of a flexible manipulator with limited control input based on backstepping and the Nussbaum function[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20486-20509. doi: 10.3934/mbe.2023906
A flexible manipulator is a versatile automated device with a wide range of applications, capable of performing various tasks. However, these manipulators are often vulnerable to external disturbances and face limitations in their ability to control actuators. These factors significantly impact the precision of tracking control in such systems. This study delves into the problem of attitude tracking control for a flexible manipulator under the constraints of control input limitations and the influence of external disturbances. To address these challenges effectively, we first introduce the backstepping method, aiming to achieve precise state tracking and tackle the issue of external disturbances. Additionally, recognizing the constraints posed by control input limitations in the flexible manipulator's actuator control system, we employ a design approach based on the Nussbaum function. This method is designed to overcome these limitations, allowing for more robust control. To validate the effectiveness and disturbance rejection capabilities of the proposed control strategy, we conduct comparative numerical simulations using MATLAB/Simulink. These simulations provide further evidence of the robustness and reliability of the control strategy, even in the presence of external disturbances and control input limitations.
[1] | F. Rubio, F. Valero, C. Llopis-Albert, A review of mobile robots: Concepts, methods, theoretical framework, and applications, Int. J. Adv. Robot. Syst., 16 (2019). https://doi.org/10.1177/1729881419839596 |
[2] | Y. Liu, D. Jiang, J. Yun, Y. Sun, C. Li, G. Jiang, et al., Self-tuning control of manipulator positioning based on fuzzy pid and pso algorithm, Front. Bioeng. Biotech., 9 (2022), 817723. https://doi.org/10.3389/fbioe.2021.817723 doi: 10.3389/fbioe.2021.817723 |
[3] | J. Borenstein, Y. Koren, Real-time obstacle avoidance for fast mobile robots, IEEE Trans. Syst. Man Cybern., 19 (1989), 1179–1187. https://doi.org/10.1109/21.44033 doi: 10.1109/21.44033 |
[4] | C. Kuchwa-Dube, J. O. Pedro, Quadrotor-based aerial manipulator altitude and attitude tracking using adaptive super-twisting sliding mode control, in 2019 International Conference on Unmanned Aircraft Systems (ICUAS), (2019), 144–151. https://doi.org/10.1109/ICUAS.2019.8797938 |
[5] | Q. Yang, S. Jagannathan, Y. Sun, Robust integral of neural network and error sign control of mimo nonlinear systems, IEEE Trans. Neural Netw. Learn. Syst., 26 (2015), 3278–3286. https://doi.org/10.1109/TNNLS.2015.2470175 doi: 10.1109/TNNLS.2015.2470175 |
[6] | J. J. Xiong, E. H. Zheng, Position and attitude tracking control for a quadrotor UAV, ISA Trans., 53 (2014), 725–731. https://doi.org/10.1016/j.isatra.2014.01.004 doi: 10.1016/j.isatra.2014.01.004 |
[7] | J. Z. Qiao, H. Wu, X. Yu, High-precision attitude tracking control of space manipulator system under multiple disturbances, IEEE Trans. Syst. Man Cy–S., 51 (2019), 4274–4284. https://doi.org/10.1109/TSMC.2019.2931930 doi: 10.1109/TSMC.2019.2931930 |
[8] | Y. Liu, X. Chen, Y. Wu, H. Cai, H. Yokoi, Adaptive neural network control of a flexible spacecraft subject to input nonlinearity and asymmetric output constraint, IEEE Trans. Neural Netw. Learn. Syst., 33 (2021), 6226–6234. https://doi.org/10.1109/TNNLS.2021.3072907 doi: 10.1109/TNNLS.2021.3072907 |
[9] | G. Antonelli, F. Caccavale, S. Chiaverini, L. Villani, Tracking control for underwater vehicle-manipulator systems with velocity estimation, IEEE J. Oceanic Eng., 25 (2000), 399–413. https://doi.org/10.1109/48.855403 doi: 10.1109/48.855403 |
[10] | S. Jia, J. Shan, Finite-time trajectory tracking control of space manipulator under actuator saturation, IEEE Trans. Ind. Electron., 67 (2019), 2086–2096. https://doi.org/10.1109/TIE.2019.2902789 doi: 10.1109/TIE.2019.2902789 |
[11] | G. Antonelli, F. Caccavale, S. Chiaverini, Adaptive tracking control of underwater vehicle-manipulator systems based on the virtual decomposition approach, IEEE Trans. Robotic. Autom., 20 (2004), 594–602. https://doi.org/10.1109/TRA.2004.825521 doi: 10.1109/TRA.2004.825521 |
[12] | D. Lee, J. Byun, H. J. Kim, Rise-based trajectory tracking control of an aerial manipulator under uncertainty, IEEE Control Syst. Lett., 6 (2022), 3379–3384. https://doi.org/10.1109/LCSYS.2022.3184820 doi: 10.1109/LCSYS.2022.3184820 |
[13] | Y. Mo, S. Weerakkody, B. Sinopoli, Physical authentication of control systems: Designing watermarked control inputs to detect counterfeit sensor outputs, IEEE Control Syst. Mag., 35 (2015), 93–109. https://doi.org/10.1109/MCS.2014.2364724 doi: 10.1109/MCS.2014.2364724 |
[14] | W. A. Zhang, L. Yu, Stabilization of sampled-data control systems with control inputs missing, IEEE Transactions on Automatic Control, 55 (2010), 447–452. https://doi.org/10.1109/TAC.2009.2036325 doi: 10.1109/TAC.2009.2036325 |
[15] | C. Wen, J. Zhou, Z. Liu, H. Su, Robust adaptive control of uncertain nonlinear systems in the presence of input saturation and external disturbance, IEEE Trans. Automat. Contr., 56 (2011), 1672–1678. https://doi.org/10.1109/TAC.2011.2122730 doi: 10.1109/TAC.2011.2122730 |
[16] | B. Liu, D. Yu, X. Zeng, D. Dong, X. He, X. Li, Practical discontinuous tracking control for a permanent magnet synchronous motor, Math. Biosci. Eng., 20 (2023), 3793–3810. http://doi.org/10.3934/mbe.2023178 doi: 10.3934/mbe.2023178 |
[17] | T. Bai, J. Song, Research on the control problem of actuator anti-saturation of supercavitating vehicle, Math. Biosci. Eng., 19 (2022), 394–419. http://doi.org/10.3934/mbe.2022020 doi: 10.3934/mbe.2022020 |
[18] | S. Liu, H. Yang, Z. Liu, Z. Zhang, Y. Li, Observer-based independent joint control for a coupled rigid-flexible manipulator with actuator saturation based on distributed parameter model, J. Vib. Control, 2022 (2022). https://doi.org/10.1177/10775463221132877 |
[19] | Z. Zhao, S. Cai, G. Ma, F. R. Yu, Vibration control of an experimental flexible manipulator against input saturation, IEEE/CAA J. Automatic. Sinica, 10 (2023), 1340–1342. https://doi.org/10.1109/JAS.2023.123345 doi: 10.1109/JAS.2023.123345 |
[20] | Y. Liu, Y. Mei, H. Cai, C. He, T. Liu, G. Hu, Asymmetric input–output constraint control of a flexible variable-length rotary crane arm, IEEE Trans. Cybern., 52 (2021), 10582–10591. https://doi.org/10.1109/TCYB.2021.3055151 doi: 10.1109/TCYB.2021.3055151 |
[21] | Y. Liu, Y. Fu, W. He, Q. Hui, Modeling and observer-based vibration control of a flexible spacecraft with external disturbances, IEEE Trans. Ind. Electron., 66 (2018), 8648–8658. https://doi.org/10.1109/TIE.2018.2884172 doi: 10.1109/TIE.2018.2884172 |
[22] | F. Cao, J. Liu, Three-dimensional modeling and input saturation control for a two-link flexible manipulator based on infinite dimensional model, J. Franklin I., 357 (2020), 1026–1042. https://doi.org/10.1016/j.jfranklin.2019.10.018 doi: 10.1016/j.jfranklin.2019.10.018 |
[23] | Y. Liu, W. Zhan, M. Xing, Y. Wu, R. Xu, X. Wu, Boundary control of a rotating and length-varying flexible robotic manipulator system, IEEE Trans. Syst. Man Cybern.–S, 52 (2020), 377–386. https://doi.org/10.1109/TSMC.2020.2999485 doi: 10.1109/TSMC.2020.2999485 |
[24] | Z. Liu, J. Liu, W. He, Adaptive boundary control of a flexible manipulator with input saturation, Int. J. Control, 89 (2016), 1191–1202. https://doi.org/10.1080/00207179.2015.1125022 doi: 10.1080/00207179.2015.1125022 |
[25] | W. Chang, S. Tong, Y. Li, Adaptive fuzzy backstepping output constraint control of flexible manipulator with actuator saturation, Neural Comput. Appl., 28 (2017), 1165–1175. https://doi.org/10.1007/s00521-016-2425-2 doi: 10.1007/s00521-016-2425-2 |
[26] | H. Yang, J. Liu, Active vibration control for a flexible-link manipulator with input constraint based on a disturbance observer, Asian J. Control, 21 (2019), 847–855. https://doi.org/10.1002/asjc.1793 doi: 10.1002/asjc.1793 |
[27] | Z. Yang, Q. Yang, Y. Sun, Adaptive neural control of nonaffine systems with unknown control coefficient and nonsmooth actuator nonlinearities, IEEE Trans. Neural Netw. Learn. Syst., 26 (2014), 1822–1827. https://doi.org/10.1109/TNNLS.2014.2354533 doi: 10.1109/TNNLS.2014.2354533 |
[28] | B. Hang, B. Su, W. Deng, Adaptive sliding mode fault-tolerant attitude control for flexible satellites based on ts fuzzy disturbance modeling, Math. Biosci. Eng., 20 (2023), 12700–12717. http://doi.org/10.3934/mbe.2023566 doi: 10.3934/mbe.2023566 |
[29] | J. Han, From pid to active disturbance rejection control, IEEE Trans. Ind. Electron., 56 (2009), 900–906. http://doi.org/10.1109/TIE.2008.2011621 doi: 10.1109/TIE.2008.2011621 |
[30] | Z. Y. Nie, C. Zhu, Q. G. Wang, Z. Gao, H. Shao, J. L. Luo, Design, analysis and application of a new disturbance rejection pid for uncertain systems, ISA Trans., 101 (2020), 281–294. https://doi.org/10.1016/j.isatra.2020.01.022 doi: 10.1016/j.isatra.2020.01.022 |
[31] | K. Zheng, Q. Zhang, Y. Hu, B. Wu, Design of fuzzy system-fuzzy neural network-backstepping control for complex robot system, Inform. Sci., 546 (2021), 1230–1255. https://doi.org/10.1016/j.ins.2020.08.110 doi: 10.1016/j.ins.2020.08.110 |
[32] | W. Deng, J. Yao, Y. Wang, X. Yang, J. Chen, Output feedback backstepping control of hydraulic actuators with valve dynamics compensation, Mech. Syst. Signal Process., 158 (2021), 107769. https://doi.org/10.1016/j.ymssp.2021.107769 doi: 10.1016/j.ymssp.2021.107769 |
[33] | Z. Liu, J. Huang, C. Wen, X. Su, Distributed control of nonlinear systems with unknown time-varying control coefficients: A novel nussbaum function approach, IEEE Trans. Automatic Control, 68 (2022), 4191–4203. https://doi.org/10.1109/TAC.2022.3206135 doi: 10.1109/TAC.2022.3206135 |
[34] | C. Wang, C. Wen, L. Guo, Multivariable adaptive control with unknown signs of the high-frequency gain matrix using novel nussbaum functions, Automatica, 111 (2020), 108618. https://doi.org/10.1016/j.automatica.2019.108618 doi: 10.1016/j.automatica.2019.108618 |
[35] | P. A. Ioannou, J. Sun, Robust Adaptive Control, Prentice Hall, Upper Saddle River (New Jersey), 1996. |
[36] | Y. Wei, Y. Zhang, B. Hang, Construction and management of smart campus: Anti-disturbance control of flexible manipulator based on pde modeling, Math. Biosci. Eng., 20 (2023), 14327–14352. http://doi.org/10.3934/mbe.2023641 doi: 10.3934/mbe.2023641 |
[37] | Z. Zhao, W. He, S. S. Ge, Adaptive neural network control of a fully actuated marine surface vessel with multiple output constraints, IEEE Trans. Control Syst. Tech., 22 (2013), 1536–1543. http://doi.org/10.1109/TCST.2013.2281211 doi: 10.1109/TCST.2013.2281211 |
[38] | A. Ailon, Simple tracking controllers for autonomous vtol aircraft with bounded inputs, IEEE Trans. Automatic Control, 55 (2010), 737–743. http://dx.doi.org/10.1109/TAC.2010.2040493 doi: 10.1109/TAC.2010.2040493 |
[39] | A. M. Zou, K. D. Kumar, A. H. J. de Ruiter, Robust attitude tracking control of spacecraft under control input magnitude and rate saturations, Int. J. Robust Nonlin. Control, 26 (2016), 799–815. https://doi.org/10.1002/rnc.3338 doi: 10.1002/rnc.3338 |
[40] | K. Graichen, A. Kugi, N. Petit, F. Chaplais, Handling constraints in optimal control with saturation functions and system extension, Syst. Control Lett., 59 (2010), 671–679. https://doi.org/10.1016/j.sysconle.2010.08.003 doi: 10.1016/j.sysconle.2010.08.003 |
[41] | A. Yeşildirek, F. L. Lewis, Feedback linearization using neural networks, Automatica, 31 (1995), 1659–1664. https://doi.org/10.1016/0005-1098(95)00078-B doi: 10.1016/0005-1098(95)00078-B |
[42] | X. M. Zhang, Q. L. Han, Event-triggered dynamic output feedback control for networked control systems, IET Control Theory Appl., 8 (2014), 226–234. https://doi.org/10.1049/iet-cta.2013.0253 doi: 10.1049/iet-cta.2013.0253 |
[43] | C. Hua, G. Feng, X. Guan, Robust controller design of a class of nonlinear time delay systems via backstepping method, Automatica, 44 (2008), 567–573. https://doi.org/10.1016/j.automatica.2007.06.008 doi: 10.1016/j.automatica.2007.06.008 |
[44] | R. Luo, S. Liu, Z. Song, F. Zhang, Fixed-time control of a class of fractional-order chaotic systems via backstepping method, Chaos Soliton. Fract., 167 (2023), 113076. https://doi.org/10.1016/j.chaos.2022.113076 doi: 10.1016/j.chaos.2022.113076 |
[45] | L. Ma, M. Wang, Neural network adaptive compensation control based on the backstepping method for nonlinear systems with time-varying delays, Int. J. Syst. Sci., 54 (2023), 1196–1212. https://doi.org/10.1080/00207721.2023.2169056 doi: 10.1080/00207721.2023.2169056 |
[46] | E. Aslmostafa, M. J. Mirzaei, M. Asadollahi, M. A. Badamchizadeh, Free-will arbitrary time stabilisation problem for a class of nonlinear strict-feedback systems based on the backstepping method, Int. J. Control, 96 (2022), 1–13. https://doi.org/10.1080/00207179.2022.2111605 doi: 10.1080/00207179.2022.2111605 |