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Abstract: In this work, an energy-preserving scheme is proposed for the nonlinear Dirac equation
by combining the exponential time differencing method with the scalar auxiliary variable (SAV) ap-
proach. First, the original equations can be transformed into the equivalent systems by utilizing the
SAV technique. Then the exponential time integrator method is applied for discretizing the temporal
derivative, and the standard central difference scheme is used for approximating the spatial derivative
for the equivalent one. Finally, the reformulated systems, the semi-discrete spatial scheme, and the
fully-discrete, linearly implicit exponential scheme are proven to be energy conserving. The numerical
experiments confirm the theoretical results.
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1. Introduction

The Dirac equation, introduced by British physicist Paul Dirac in 1928, is a relativistic wave equa-
tion for spin-1/2 particles, bridging quantum mechanics and special relativity. Unlike the Schrödinger
equation, which is non-relativistic and applies to particles moving at speeds much lower than the speed
of light, the Dirac equation accounts for relativistic effects. While the Schrödinger equation describes
wave functions with a single complex value, the Dirac equation uses bispinors wave functions repre-
sented as vectors of four complex components-reflecting its relativistic nature. Furthermore, the Dirac
equation reduces to the Schrödinger equation in the non-relativistic limit, demonstrating its consistency
with quantum mechanics in low-speed regimes. For massless particles, the Dirac equation simplifies
to the Weyl equation, which describes particles like neutrinos. As such, the Dirac equation provides a
more comprehensive framework for understanding the behavior of particles across various energy and
velocity scales [1, 2].
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A key characteristic of the Dirac equation, especially in its nonlinear form, is its ability to de-
scribe relativistic quantum systems with intrinsic spin-1/2 properties. It has profound implications in
quantum field theory, where it plays a central role in the study of fermions and antimatter. The Dirac
equation also appears in condensed matter physics, particularly in the study of materials like graphene
and topological insulators, where low-energy excitations behave as Dirac fermions. Given its exten-
sive applications across high-energy physics, condensed matter, and gravitational theories, significant
efforts have been made to develop accurate numerical methods for solving the Dirac equation.

In this work, we focus on numerically solving the nonlinear Dirac equation in (1 + 1)-dimensions,
meaning one temporal dimension and one spatial dimension, which is represented as:

i∂tΦ =
[
−iσ1∂x + σ3

]
Φ +

[
V(x)I2 − A(x)σ1

]
Φ + F(Φ)Φ, x ∈ R, t > 0, (1.1a)

Φ(x, 0) = Φ0(x), lim
|x|→∞
Φ(x, t) = 0, x ∈ R, t > 0, (1.1b)

with
F(Φ) = λ1(Φ∗σ3Φ)σ3 + λ2|Φ|

2I2,

where i =
√
−1, λ1, λ2 ∈ R,Φ = Φ(x, t) =

(
ϕ1(x, t), ϕ2(x, t)

)⊤, Φ0(x) = (ϕ01(x), ϕ02(x))⊤ stands the
spinor field with the superscript⊤ denoting the transpose, ϕ1, ϕ2, ϕ01, ϕ02 are complex-valued functions,
Φ∗ is the conjugate transpose ofΦ, V(x) and A(x) are the real-valued time-independent electric potential
and magnetic potential, respectively, and σk(k = 1, 3) denote the Pauli matrices, i.e.,

σ1 =

(
0 1
1 0

)
, σ3 =

(
1 0
0 −1

)
.

The equations (1.1) possess the energy conservation law:

E(t)=
∫
R

[
−iΦ∗σ1∂xΦ+Φ

∗σ3Φ+V(x)|Φ|2−A(x)Φ∗σ1Φ+
λ1

2
(Φ∗σ3Φ)2+

λ2

2
|Φ|4

]
dx ≡ E(0).

There are several efficient numerical methods available for solving the Dirac equation, such as the
fourth-order compact finite difference method [3], exponential wave integrator methods for the Dirac
equation with small potentials [4], finite difference time domain methods [5], and uniformly accu-
rate (UA) schemes [6] for the Dirac equation in the nonrelativistic limit regime, and so on [7–10].
These methods are capable of solving many real-life problems, especially in the areas of fluid dynam-
ics [11–13], biomechanics, aerodynamics, and areas wherever PDEs arise on the curved domains or
domains that are challenging to mesh [14–19], even when dealing with very stiff problems [20–22].
The scalar auxiliary variable (SAV) method is an efficient approach for constructing energy-stable
schemes for nonlinear systems. By reformulating nonlinear terms, it ensures energy stability while
solving only decoupled linear systems with constant coefficients at each time step. This contrasts with
other methods, like the fully implicit method, which require an iterative process to solve nonlinear
systems. The SAV method¡¯s simplicity and reduced computational cost make it a practical and effec-
tive tool for dissipative and conservative systems in various applications [23–25]. Zhe and Shen [8]
developed two SAV/CN-Hermite conservative schemes for one- and two-dimensional nonlinear Dirac
equations. Yang and Xing [9] proposed a fully discrete, energy-conserving, discontinuous Galerkin
method using the scalar auxiliary variable (SAV) technique for solving the Dirac equation. Addition-
ally, several techniques have been developed for constructing higher-order linearly implicit schemes,
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such as the SAV Runge–Kutta methods [26] and the relaxation Runge–Kutta methods [27]. More re-
lated work can be found in [28–32]. Moreover, the exponential integrator [33] is widely recognized
for its ability to exactly integrate the linear component of a given equation, enabling it to achieve sta-
bility and efficiency, particularly for stiff differential equations, such as highly oscillatory ODEs and
semidiscrete time-dependent PDEs.

In this work, we propose a linearly implicit energy-preserving scheme for solving the nonlinear
Dirac equation by leveraging the exponential time differencing method in combination with the scalar
auxiliary variable (SAV) approach. First, we introduce a scalar auxiliary variable to reformulate the
original nonlinear Dirac equation into an equivalent system of equations. Then, the exponential time
integrator is utilized to discretize the temporal derivatives, while the standard central difference method
is employed to approximate the spatial derivatives. Finally, the reformulated systems, semi-discrete
spatial schemes, and the fully discrete, linearly implicit exponential schemes are proven to be energy-
preserving. The proposed schemes offer several advantages. One is that the schemes are linearly
implicit, requiring only the solution of linear systems at each time step. The other is that the schemes
ensure energy conservation for the nonlinear Dirac equation without any limitations.

The rest of the paper is organized as follows. In Section 2, the (1 + 1)-dimensional Dirac system
can be rewritten as the reformulated one with the SAV approach. In Section 3, the spatial discretization
semi-scheme is presented and the corresponding conservative property is given. In Section 4, the
linearly implicit energy-preserving time exponential scheme is presented. In Section 5, numerical
experiments are carried out to show the theoretical results.

2. Reformulation through the SAV approach

Let ϕ1(x, t) = p1(x, t) + iq1(x, t), ϕ2(x, t) = p2(x, t) + iq2(x, t), where p1, q1, p2, and q2 are real
functions to be solved. The system (1.1) can be written as follows:

∂t p1 + ∂x p2 − q1 − V(x)q1 + A(x)q2 − λ1(p2
1 + q2

1 − p2
2 − q2

2)q1 − λ2(p2
1 + q2

1 + p2
2 + q2

2)q1 = 0, (2.1a)
∂tq1 + ∂xq2 + p1 + V(x)p1 − A(x)p2 + λ1(p2

1 + q2
1 − p2

2 − q2
2)p1 + λ2(p2

1 + q2
1 + p2

2 + q2
2)p1 = 0, (2.1b)

∂t p2 + ∂x p1 + q2 − V(x)q2 + A(x)q1 + λ1(p2
1 + q2

1 − p2
2 − q2

2)q2 − λ2(p2
1 + q2

1 + p2
2 + q2

2)q2 = 0, (2.1c)
∂tq2 + ∂xq1 − p2 + V(x)p2 − A(x)p1 − λ1(p2

1 + q2
1 − p2

2 − q2
2)p2 + λ2(p2

1 + q2
1 + p2

2 + q2
2)p2 = 0. (2.1d)

Define z = (p1, q1, p2, q2)T and functional S (z) = S 1(z) + S 2(z) with

S 1(z) = −1/2(p2
1 + q2

1 − p2
2 − q2

2) − 1/2V(x)(p2
1 + q2

1 + p2
2 + q2

2) + A(x)(p1 p2 + q1q2),
S 2(z) = −1/4λ1(p2

1 + q2
1 − p2

2 − q2
2)2 − 1/4λ2(p2

1 + q2
1 + p2

2 + q2
2)2.

By introducing a scalar auxiliary variable q(t) =
√∫
R

S 2(z)dx +C0, , where C0 is a positive constant

to make sure that
∫
R

S 2(z)dx> −C0, the system (2.1) can be rewritten as

D∂t z + K∂x z = N z − V(x)z + A(x)J z + q(t)
∇zS 2(z)√∫

R
S 2(z)dx +C0

, (2.2a)

d
dt

q(t) =

∫
R
(∂t z)⊤∇zS 2(z)dx

2
√∫
R

S 2(z)dx +C0

, (2.2b)
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q(0) =

√∫
R

S 2(z(x, 0))dx +C0, z(x, 0) = (ℜϕ01, ℑϕ01, ℜϕ02, ℑϕ02)⊤, (2.2c)

whereℜ denotes the real part, ℑ denotes the imaginary part, and

D =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 ,K =


0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0

 , N =

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 , J =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .
Before giving conserving energy law, we introduce a useful lemma.

Lemma 2.1. For any L-dimensional vector x(t) dependent on t and any L × L real symmetric matrix
G and real skew-symmetric matrix H, it holds that

d
dt

(x(t)⊤Gx(t)) = 2(Gx(t))⊤
d
dt

x(t), x(t)⊤Hx(t) = 0.

Proof. The proof is completed by applying basic computation. □

Theorem 2.2. The system (2.2) admits the following energy conservation law:

Es(t) =
∫
R

(
z⊤K zx − 2S 1(z)

)
dx − 2q(t)2 ≡ Es(0), t ≥ 0.

Proof. Multiplying both sides of (2.2a) on the left by −2(∂t z)⊤ and integrating over R respect to x, and
using Lemma 2.1, one has

d
dt

∫
R

[
z⊤K zx + z⊤(−N + V(x) − A(x)J)z

]
dx −

2
∫
R
(∂t z)⊤∇zS 2(z)dx√∫
R

S 2(z)dx +C0

q(t) = 0. (2.3)

Multiplying both sides of (2.2b) by 2q gives

d
dt

q(t)2 =

∫
R
(∂t z)⊤∇zS 2(z)dx√∫
R

S 2(z)dx +C0

q(t). (2.4)

Combining (2.3) with (2.4), the proof is complete. □

3. Energy-preserving spatial semi-discretization

Truncate the whole space problem onto an interval [a, b] with zero boundary conditions and consider
a finite time interval [0,T ]. Divide [a, b] into M parts and denote h = (b− a)/M, Ωh = {x j = a+ jh|0 ≤
j ≤ M}. Let XM =

{
v|v = {v j|1 ≤ j ≤ M − 1}

}
be a grid function space on Ωh, and for any u, v ∈ X4M,

define δxu j = (u j+1 − u j−1)/(2h), ⟨u, v⟩ = h
∑4M−4

j=1 u⊤j v j. Before presenting the scheme of system (2.2),
we introduce a circular matrix
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B =
1

2h



0 1 0 · · · 0 0
−1 0 1 · · · 0 0
0 −1 0 · · · 0 0
...
...

...
. . .

...
...

0 0 · · · · · · 0 1
0 0 · · · · · · −1 0


M−1×M−1

,

and define

Ṽ = Diag
(
V1,V2, · · · ,VM−1

)
⊗ I4, Ã = Diag

(
A1, A2, · · · , AM−1

)
⊗ I4,

B̃ = B ⊗ I4, D̃ = IM−1 ⊗ D, K̃ = IM−1 ⊗ K, Ñ = IM−1 ⊗ N, J̃ = IM−1 ⊗ J,

with V j = V(x j), A j = A(x j).
By applying the second-order central difference method for spatial discretization and the trapezoidal

quadrature formula in system (2.2), one obtains

D̃
d
dt

zM−1 = −B̃K̃ zM−1 + Ñ zM−1 − Ṽ zM−1 + ÃJ̃ zM−1 + qM−1(t)
∇zS 2(zM−1)

√
⟨S 2(zM−1), 1⟩ +C0

, (3.1a)

d
dt

qM−1(t) =
⟨∇zS 2(zM−1), d

dt zM−1⟩

2
√
⟨S 2(zM−1), 1⟩ +C0

, (3.1b)

qM−1(0) =
√
⟨S 2(zM−1(0)), 1⟩ +C0, ((zM−1)(0)) j = z(x j, 0), 1 ≤ j ≤ M − 1, (3.1c)

where 1 = (1, 1, · · · , 1)4(M−1)×1 and

zM−1(t)=
(
p1(x1, t), q1(x1, t), p2(x1, t), q2(x1, t), · · ·,p1(xM−1, t), q1(xM−1, t), p2(xM−1, t), q2(xM−1, t)

)⊤
∈X4(M−1),

with(
p1(x0, t), q1(x0, t), p2(x0, t), q2(x0, t)

)⊤
=

(
p1(xM, t), q1(xM, t), p2(xM, t), q2(xM, t)

)⊤
=

(
0, 0, 0, 0

)⊤
.

Theorem 3.1. The semi-discrete system (3.1) admits the following semi-discrete energy

EM(t) =
〈
zM−1, (B̃K̃ − Ñ + Ṽ − ÃJ̃)zM−1

〉
− 2qM−1(t)2 ≡ EM(0), t ≥ 0.

Proof. Taking the inner products with −2dzM−1/dt of (3.1a), one has〈
D̃

d
dt

zM−1,−2
d
dt

zM−1

〉
=

〈
B̃K̃ zM−1, 2

d
dt

zM−1

〉
+

〈
Ñ zM−1,−2

d
dt

zM−1

〉
+

〈
Ṽ zM−1, 2

d
dt

zM−1

〉
+

〈
ÃJ̃ zM−1,−2

d
dt

zM−1

〉
−

2
〈
∇zS 2 (zM−1) , d

dt zM−1

〉
√
⟨S 2 (zM−1) , 1⟩ +C0

qM−1 (t) .

(3.2)

Based on the fact that B̃K̃ and ÃJ̃ are symmetric matrices, and using Lemma 2.1, it holds that〈
B̃K̃ zM−1, 2

d
dt

zM−1

〉
= 2h

(
B̃K̃ zM−1

)⊤ d
dt

zM−1 = h
d
dt

(
z⊤M−1B̃K̃ zM−1

)
=

d
dt

〈
zM−1, B̃K̃ zM−1

〉
,〈

Ñ zM−1,−2
d
dt

zM−1

〉
= −

d
dt

〈
zM−1, Ñ zM−1

〉
,

〈
Ṽ zM−1, 2

d
dt

zM−1

〉
=

d
dt

〈
zM−1, Ṽ zM−1

〉
,〈

ÃJ̃ zM−1,−2
d
dt

zM−1

〉
= −

d
dt

〈
zM−1, ÃJ̃ zM−1

〉
,

〈
D̃

d
dt

zM−1,−2
d
dt

zM−1

〉
= 0.

(3.3)
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Multiplying both sides of (3.1b) by 2qM−1 (t) gives

d
dt

qM−1 (t)2 =

〈
∇zS 2 (zM−1) , d

dt zM−1

〉
√
⟨S 2 (zM−1) , 1⟩ +C0

qM−1 (t) . (3.4)

Combining (3.2)–(3.4), one gets Theorem 3.1 directly. □

4. Linearly implicit energy-preserving exponential scheme

Divide the interval [0,T ] into N equal parts, denote τ = T/N, tn = nτ, 0 ≤ n ≤ N, Ωτ = {tn|0 ≤ n ≤
N} and let XMN =

{
v|v = {vn

j |1 ≤ j ≤ M − 1, 0 ≤ n ≤ N}
}

be a grid function space on Ωh × Ωτ. For any
v ∈ XMN , denote

δtvn
j =

vn+1
j − vn

j

τ
, vn+1/2

j =
vn+1

j + vn
j

2
, v̂n+1/2

j =
3vn

j − vn−1
j

2
.

Integrating the Eqs (3.1a)–(3.1b) from tn to tn+1, one has

zM−1(tn + τ) = exp(Y)zM−1(tn) + τ
∫ 1

0
exp((1 − ξ)Y)D̃−1 f (zM−1(tn + ξτ), q(tn + ξτ))dξ,

q(tn + τ) = q(tn) + τ
∫ 1

0

⟨∇zS 2(zM−1(tn + ξτ)), d
dt z⟩

2
√
⟨S 2(zM−1(tn + ξτ)), 1⟩ +C0

dξ,

where Y = τD̃−1W, W = −B̃K̃ + Ñ − Ṽ + ÃJ̃.
By using extrapolation method, one obtains

zn+1 = exp(Y)zn + τg(Y)D̃−1 f ( ẑn+1/2, qn+1/2), 1 ≤ n ≤ N − 1, (4.1a)

qn+1 = qn + τ
⟨∇zS 2( ẑn+1/2), δt zn⟩

2
√
⟨S 2( ẑn+1/2), 1⟩ +C0

, 1 ≤ n ≤ N − 1, (4.1b)

z1 = exp(Y)z0 + τg(Y)D̃−1 f (z0, 1/2(q0 + q1)), (4.1c)

q1 = q0 + τ
⟨∇zS 2(z0), δt z0⟩

2
√
⟨S 2(z0), 1⟩ +C0

, (4.1d)

where

g(Y) =
∫ 1

0
exp((1 − ξ)Y)dξ, f ( ẑn+1/2, qn+1/2) =

∇zS 2( ẑn+1/2)√
⟨S 2( ẑn+1/2), 1⟩ +C0

qn+1/2.

To demonstrate that the scheme (4.1) can admit a fully discrete energy, we first introduce a lemma
as follows:

Lemma 4.1. ( [33]) For any symmetric matrix G, skew-symmetric matrix H, and scalar τ ≥ 0, the
matrix exp(τHG)⊤G exp(τHG) −G is a nilpotent matrix.

Theorem 4.2. The linearly implicit scheme (4.1) admits the following discrete energy:

En+1
h = En

h, 0 ≤ n ≤ N,

where En
h = −h(zn)⊤W zn − 2(qn)2.
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Proof. Note that the matrix W is symmetric; assume that {Wϵ} is a series of symmetric matrices sat-
isfying {Wϵ} → W when ϵ → 0. For 1 ≤ n ≤ N − 1, let zn

ϵ and qn
ϵ satisfy the perturbed scheme

zn+1
ϵ = exp(Yϵ)zn

ϵ + τg(Yϵ)D̃−1 f ( ẑn+1/2
ϵ , qn+1/2

ϵ ), (4.2a)

qn+1
ϵ = qn

ϵ + τ
⟨∇zS 2( ẑn+1/2

ϵ ), δt zn
ϵ ⟩

2
√
⟨S 2( ẑn+1/2

ϵ ), 1⟩ +C0

, (4.2b)

where Yϵ = τD̃−1Wϵ . Denote fϵ = f ( ẑn+1/2
ϵ , qn+1/2

ϵ ), f̃ϵ = W−1
ϵ fϵ and

En
ϵ,h = −h(zn

ϵ )
⊤Wϵ zn

ϵ − 2(qn
ϵ )

2.

By using τg(Yϵ)D̃−1Wϵ f̃ϵ = [exp(Yϵ) − I] f̃ϵ , we can deduce from (4.2a) that

(zn+1
ϵ )⊤Wϵ zn+1

ϵ =
[
(zn
ϵ )
⊤ (

exp(Yϵ)
)⊤
+ τ f ⊤ϵ (D̃−1)⊤g(Yϵ)⊤

]
Wϵ

[
exp(Yϵ)zn

ϵ + τg(Yϵ)D̃−1 fϵ
]

= (zn
ϵ )
⊤ (

exp(Yϵ)
)⊤Wϵ exp(Yϵ)zn

ϵ + 2(zn
ϵ )
⊤ (

exp(Yϵ)
)⊤Wϵ

[
exp(Yϵ) − I

]
f̃ϵ

+ f̃ ⊤ϵ
[ (

exp(Yϵ)
)⊤
− I

]
Wϵ

[
exp(Yϵ) − I

]
f̃ϵ

= (zn
ϵ )
⊤(exp(Yϵ)

)⊤Wϵ exp(Yϵ)zn
ϵ+ 2(zn

ϵ )
⊤
[(

exp(Yϵ)
)⊤Wϵ exp(Yϵ) −

(
exp(Yϵ)

)⊤Wϵ
]

f̃ϵ

+ f̃ ⊤ϵ
[ (

exp(Yϵ)
)⊤Wϵ exp(Yϵ) −

(
exp(Yϵ)

)⊤Wϵ −Wϵ exp(Yϵ) +Wϵ
]
f̃ϵ .

(4.3)

It follows from (4.2b) that

(qn+1
ϵ )2 − (qn

ϵ )
2 =
⟨∇zS 2( ẑn+1/2

ϵ ), zn+1
ϵ − zn

ϵ ⟩√
⟨S 2( ẑn+1/2

ϵ ), 1⟩ +C0

qn+1/2
ϵ

= ( fϵ , zn+1
ϵ − zn

ϵ ) = h((zn+1
ϵ )⊤ − (zn

ϵ )
⊤) fϵ

= h(zn
ϵ )
⊤
[ (

exp(Yϵ)
)⊤
− I

]
fϵ + τh f ⊤ϵ (D̃−1)⊤g (Yϵ)⊤ fϵ

= h(zn
ϵ )
⊤
[ (

exp(Yϵ)
)⊤Wϵ −Wϵ

]
f̃ϵ + h f̃ ⊤ϵ Y⊤ϵ g(Yϵ)⊤Wϵ f̃ϵ

= h(zn
ϵ )
⊤
[ (

exp(Yϵ)
)⊤Wϵ −Wϵ

]
f̃ϵ + h f̃ ⊤ϵ

[ (
exp(Yϵ)

)⊤Wϵ −Wϵ
]
f̃ϵ .

(4.4)

Combining with (4.2)–(4.4), and Lemma 4.1, we can deduce that

En+1
ϵ,h − En

ϵ,h = −h(zn+1
ϵ )⊤Wϵ zn+1

ϵ + h(zn
ϵ )
⊤Wϵ zn

ϵ − 2(qn+1
ϵ )2 + 2(qn

ϵ )
2

= −h(zn
ϵ )
⊤
[ (

exp(Yϵ)
)⊤Wϵ exp(Yϵ) −Wϵ

]
zn
ϵ − 2h(zn

ϵ )
⊤
[ (

exp(Yϵ)
)⊤Wϵ exp(Yϵ) −Wϵ

]
f̃ϵ

− h f̃ ⊤ϵ
[ (

exp(Yϵ)
)⊤Wϵ exp(Yϵ) −Wϵ

]
f̃ϵ − h f̃ ⊤ϵ

[ (
exp(Yϵ)

)⊤Wϵ −Wϵ exp(Yϵ)
]
f̃ϵ

=−h(zn
ϵ + f̃ϵ)⊤

[ (
exp(Yϵ)

)⊤Wϵ exp(Yϵ) −Wϵ
] (

zn
ϵ + f̃ϵ

)
−h f̃ ⊤ϵ

[ (
exp(Yϵ)

)⊤Wϵ −Wϵ exp(Yϵ)
]
f̃ϵ =0.

Accordingly, when ϵ → 0, zn
ϵ → zn, qn

ϵ → qn, and from (4.2) we can obtain

En+1
h = En

h, 1 ≤ n ≤ N − 1.

It is similar to proving that E1
h = E0

h. Thus, the proof is complete. □
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For 1 ≤ n ≤ N − 1, the solution of (4.1) can be computed as follows:
The system of (4.1) can be rewritten as

zn+1 = kn + ln⟨∇zS 2( ẑn+1/2), zn+1⟩, (4.5)

where

ln =
τg(Y)D̃−1∇zS 2( ẑn+1/2)
4⟨S 2( ẑn+1/2), 1⟩ + 4C0

,

kn = exp(Y)zn + τg(Y)D̃−1 ∇zS 2( ẑn+1/2)√
⟨S 2( ẑn+1/2), 1⟩ +C0

qn − ln⟨∇zS 2( ẑn+1/2), zn⟩.

Taking the inner product of (4.5) with ∇zS 2( ẑn+1/2), one has

⟨∇zS 2( ẑn+1/2), zn+1⟩ =
⟨∇zS 2( ẑn+1/2), kn⟩

1 − ⟨∇zS 2( ẑn+1/2), ln⟩
. (4.6)

The first is to solve ⟨∇zS 2( ẑn+1/2), zn+1⟩ by system (4.6); the next is to get zn+1 by (4.5). qn+1 is got from
(4.1) finally.

5. Numerical experiments

To support given theoretical results, some numerical tests of scheme (4.1) for model (1.1) are pre-
sented, where we choose

V(x) = (1 − x)/(1 + x2), A(x) = −(1 + x)2/(1 + x2), λ1 = 1, λ2 = 1.

Furthermore, we compare the proposed scheme with the following Crank–Nicolson finite difference
(CNFD) scheme:

iδtΦ
n
j =

[
−iσ1δx + σ3 + V jI2 − A jσ1 + 1/2

(
F(Φn

j) + F(Φn+1
j )

)]
Φ

n+1/2
j , 1 ≤ j ≤ M − 1, 0 ≤ n ≤ N − 1,

(5.1)

Example 5.1. Considering the following numerical example

i∂tΦ −
[
−iσ1∂x + σ3

]
Φ −

[
V(x)I2 − A(x)σ1

]
Φ − F(Φ)Φ = f (x, t), x ∈ [0, π], t ∈ [0, 1].

The exact solutions are
ϕ1(x, t) = ϕ2(x, t) = (t + 1) sin(x).

The initial conditions ϕ01(x), ϕ02(x), and the right-hand function f (x, t) are given by the exact solutions.
To obtain numerical errors, we define the following error functions:

E(τ, h) = max
1≤ j≤M−1

∣∣∣Φ(x j, tn) − Φn
j

∣∣∣ .
The convergence orders are calculated by log2[E(τ, h)/E(τ/2, h)] in time for sufficiently small spatial
steps h and log2[E(τ, h)/E(τ, h/2)] in space for sufficiently small temporal steps τ. With the difference
step sizes τ0 and h0 halved in each calculation, Example 5.1 is numerically solved by schemes (4.1)
and (5.1). The global errors E(h, τ) and corresponding CPU time for scheme (4.1) are given in Tables
1 and 3, while those for the CNFD scheme are shown in Tables 2 and 4. It is observed that the scheme
(4.1) works in a shorter CPU time.

Electronic Research Archive Volume 33, Issue 1, 263–276.



271

Table 1. Temporal convergent order of scheme (4.1) with h = π/400.

τ E(h, τ) Ordτ CPU time/s
τ0 = 0.05 4.9233e-03 * 2.1456
τ0/2 1.1010e-04 2.1608 3.3193
τ0/4 2.6982e-04 2.0287 6.5135
τ0/8 6.6567e-05 2.0191 11.5813

Table 2. Temporal convergent order of CNFD scheme with h = π/400.

τ E(h, τ) Ordτ CPU time/s
τ0 = 0.05 2.9075e-03 * 15.3995
τ0/2 7.3514e-04 1.9836 21.5185
τ0/4 1.8331e-04 2.0037 41.8889
τ0/8 4.4354e-05 2.0008 70.6933

Table 3. Spatial convergent order of scheme (4.1) with τ = 0.002.

h E(h, τ) Ordh CPU time/s
h0 = π/10 2.6898e-02 * 0.4215
h0/2 7.3962e-03 1.8626 0.5672
h0/4 1.9461e-03 1.9261 0.8877
h0/8 4.8885e-03 1.9931 1.9674

Table 4. Spatial convergent order of CNFD scheme with τ = 0.002.

h E(h, τ) Ordh CPU time/s
h0 = π/10 2.7102e-02 * 0.5044
h0/2 7.5971e-02 1.8349 1.4662
h0/4 2.0187e-03 1.9120 1.3700
h0/8 5.1501e-03 1.9708 4.0939

Example 5.2. Considering the following numerical example:

i∂tΦ =
[
−iσ1∂x + σ3

]
Φ +

[
V(x)I2 − A(x)σ1

]
Φ + F(Φ)Φ, x ∈ [−16, 16], t ∈ [0, 1].

The initial and boundary conditions are set to

ϕ1(x, 0) = exp(−x2/2), ϕ2(x, 0) = exp(−(x − 1)2/2), Φn+1
0 = Φn+1

M = 0, 0 ≤ n ≤ N − 1,

and C0 = 2 in scheme (4.1).
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We first test and study the convergence orders of schemes (4.1) and (5.1). We define the following
error functions:

Ex(τ, h) = max
1≤ j≤M+1

∣∣∣Φn
2 j−1(τ, h/2) − Φn

j(τ, h)
∣∣∣ , Et(τ, h) = max

1≤n≤N+1

∣∣∣Φ2n−1
j (τ/2, h) − Φn

j(τ, h)
∣∣∣ ,

where Φn
j(τ, h) is the numerical solution with time step τ and space step h. The convergence or-

ders are calculated by log2[Et(τ, h)/Et(τ/2, h)] in time for sufficiently small spatial steps h and
log2[Ex(τ, h)/Ex(τ, h/2)] in space for sufficiently small temporal steps τ. Tables 5–8 display tempo-
ral errors with h = 1/32 and the spatial errors with τ = 0.001, respectively. From the tables, it is
evident that the scheme (4.1) requires less CPU time and produces smaller numerical errors compared
to the scheme (5.1).

Table 5. Temporal convergent order of scheme (4.1) with h = 1/32.

τ E(h, τ) Ordτ CPU time/s
τ0 = 0.01 6.6098e-04 * 102.5617
τ0/2 1.6724e-04 1.9827 153.6271
τ0/4 4.2065e-05 1.9912 512.7251
τ0/8 1.0547e-05 1.9957 1308.2622

Table 6. Temporal convergent order of CNFD scheme with h = 1/32.

τ E(h, τ) Ordτ CPU time/s
τ0 = 0.01 7.1894e-04 * 1154.6421
τ0/2 1.7984e-04 1.9991 1997.5825
τ0/4 4.4967e-05 1.9997 3464.5729
τ0/8 1.1242e-05 1.9999 7433.0148

Table 7. Spatial convergent order of scheme (4.1) with τ = 10−3.

h E(h, τ) Ordh CPU time/s
h0 = 1/4 3.9496e-02 * 24.6294
h0/2 9.6389e-03 2.0347 134.6328
h0/4 2.5814e-03 1.9007 709.6157
h0/8 6.5697e-04 1.9742 5905.5614

Table 8. Spatial convergent order of CNFD scheme with τ = 10−3.

h E(h, τ) Ordh CPU time/s
h0 = 1/4 3.9655e-02 * 132.4814
h0/2 1.0403e-02 1.9305 759.1494
h0/4 2.7253e-03 1.9325 4718.5904
h0/8 6.8641e-04 1.9893 25146.5914
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The relative energy errors are calculated by REn =
∣∣∣(En − E0)/E0

∣∣∣ , where En denotes the discrete
energy at each time node. The discrete energy of both schemes and the original energy of (4.1) are
shown in Figure 1. The relative energy errors are shown in Figure 2. One can see that the modified
energy of scheme (4.1) differs from the original energy by a constant. The relative energy error of the
scheme (4.1) is at a relatively lower value, which means the scheme can preserve the energy better.

5 10 15 20 25 30 35 40 45 50

3

4
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10 scheme(4.1)

original energy

CNFD

Figure 1. The discrete energy of two schemes with τ = 0.02, h = 0.1.
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Figure 2. The energy deviation of two schemes with τ = 0.02, h = 0.1.
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