Review

A comprehensive review of graph convolutional networks: approaches and applications

  • Received: 03 October 2022 Revised: 04 March 2023 Accepted: 28 March 2023 Published: 31 May 2023
  • Convolutional neural networks (CNNs) utilize local translation invariance in the Euclidean domain and have remarkable achievements in computer vision tasks. However, there are many data types with non-Euclidean structures, such as social networks, chemical molecules, knowledge graphs, etc., which are crucial to real-world applications. The graph convolutional neural network (GCN), as a derivative of CNNs for non-Euclidean data, was established for non-Euclidean graph data. In this paper, we mainly survey the progress of GCNs and introduce in detail several basic models based on GCNs. First, we review the challenges in building GCNs, including large-scale graph data, directed graphs and multi-scale graph tasks. Also, we briefly discuss some applications of GCNs, including computer vision, transportation networks and other fields. Furthermore, we point out some open issues and highlight some future research trends for GCNs.

    Citation: Xinzheng Xu, Xiaoyang Zhao, Meng Wei, Zhongnian Li. A comprehensive review of graph convolutional networks: approaches and applications[J]. Electronic Research Archive, 2023, 31(7): 4185-4215. doi: 10.3934/era.2023213

    Related Papers:

  • Convolutional neural networks (CNNs) utilize local translation invariance in the Euclidean domain and have remarkable achievements in computer vision tasks. However, there are many data types with non-Euclidean structures, such as social networks, chemical molecules, knowledge graphs, etc., which are crucial to real-world applications. The graph convolutional neural network (GCN), as a derivative of CNNs for non-Euclidean data, was established for non-Euclidean graph data. In this paper, we mainly survey the progress of GCNs and introduce in detail several basic models based on GCNs. First, we review the challenges in building GCNs, including large-scale graph data, directed graphs and multi-scale graph tasks. Also, we briefly discuss some applications of GCNs, including computer vision, transportation networks and other fields. Furthermore, we point out some open issues and highlight some future research trends for GCNs.



    加载中


    [1] Z. Zhang, P. Cui, W. Zhu, Deep Learning on Graphs: A Survey, IEEE Trans. Knowl. Data Eng., 34 (2022), 249–270. https://doi.org/10.1109/TKDE.2020.2981333 doi: 10.1109/TKDE.2020.2981333
    [2] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, P. Vandergheynst, The emerging field of signal processing on graphs: Extending high dimensional data analysis to networks and other irregular domains, IEEE Signal Process. Mag., 30 (2013), 83–98. https://doi.org/10.1109/MSP.2012.2235192 doi: 10.1109/MSP.2012.2235192
    [3] A. Sandryhaila, J. M. F. Moura, Big data analysis with signal processing on graphs: Representation and processing of massive data sets with irregular structure, IEEE Signal Process. Mag., 31 (2014), 80–90. https://doi.org/10.1109/MSP.2014.2329213 doi: 10.1109/MSP.2014.2329213
    [4] A. Sandryhaila, J. M. F. Moura, Discrete signal processing on graphs, IEEE Trans. Signal Process., 61 (2013), 1644–1656. https://doi.org/10.1109/TSP.2013.2238935 doi: 10.1109/TSP.2013.2238935
    [5] J. Bruna, W. Zaremba, A. Szlam, Y. Lecun, Spectral networks and locally connected networks on graphs, arXiv preprint, (2013), arXiv: 1312.6203. https://doi.org/10.48550/arXiv.1312.6203
    [6] D. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, eet al., Convolutional networks on graphs for learning molecular fingerprints, Adv. Neural Inf. Process. Syst., 28 (2015), 2224–2232.
    [7] T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, arXiv preprint, (2016), arXiv: 1609.02907.
    [8] J. Atwood, D. Towsley, Diffusion-convolutional neural networks, Adv. Neural Inf. Process. Syst., 29 (2016), 1993–2001.
    [9] M. Defferrard, X. Bresson, P. Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, Adv. Neural Inf. Process. Syst., 29 (2016), 3837–3845.
    [10] R. Levie, F. Monti, X. Bresson, M. M. Bronstein, CayleyNets: Graph convolutional neural networks with complex rational spectral filters, IEEE Trans. Signal Process., 67 (2019), 97–109. https://doi.org/10.1109/TSP.2018.2879624 doi: 10.1109/TSP.2018.2879624
    [11] R. Levie, W. Huang, L. Bucci, M. Bronstein, G. Kutyniok, Transferability of Spectral Graph Convolutional Neural Networks, J. Mach. Learn. Res., 22 (2021), 12462–112520.
    [12] F. Monti, D. Boscaini, J. Masci, E. Rodola, J. Svoboda, M. M. Bronstein, Geometric deep learning on graphs and manifolds using mixture model CNNs, . IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, 2017, 5425–5434. https://doi.org/10.1109/CVPR.2017.576
    [13] M. Fey, J. E. Lenssen, F. Weichert, H. Müller, SplineCNN: fast geometric deep learning with continuous b-spline kernels, Proc. IEEE Conf. Comput. Vis. Pattern Recognit., (2018), 869–877. https://doi.org/10.1109/CVPR.2018.00097 doi: 10.1109/CVPR.2018.00097
    [14] W. L. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on large graphs, Adv. Neural Inf. Process. Syst., 30 (2017), 1024–1034.
    [15] Y. Zhao, J. Qi, Q. Liu, R. Zhang, WGCN: Graph Convolutional Networks with Weighted Structural Features, in 2021 SIGIR, (2021), 624–633. https://doi.org/10.1145/3404835.3462834
    [16] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, L. Zhu, Adversarial examples for graph data: Deep insights into attack and defense, arXiv preprint, (2019), arXiv: 1903.01610. https://doi.org/10.48550/arXiv.1903.01610
    [17] D. Zügner, S. Günnemann, Adversarial attacks on graph neural networks via meta learning, arXiv preprint, (2019), arXiv: 1902.08412. https://doi.org/10.48550/arXiv.1902.08412
    [18] K. Xu, H. Chen, S. Liu, P. Chen, T. Weng, M. Hong, et al., Topology attack and defense for graph neural networks: An optimization perspective, in Proc. Int. Joint Conf. Artif. Intell., (2019), 3961–3967. https://doi.org/10.24963/ijcai.2019/550
    [19] L. Chen, J. Li, J. Peng, A survey of adversarial learning on graph, arXiv preprint, (2003), arXiv: 2003.05730. https://doi.org/10.48550/arXiv.2003.05730
    [20] L. Chen, J. Li, J. Peng, Y. Liu, Z. Zheng, C. Yang, Understanding Structural Vulnerability in Graph Convolutional Networks, in Proc. Int. Joint Conf. Artif. Intell., (2021), 2249–2255. https://doi.org/10.24963/ijcai.2021/310
    [21] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, arXiv preprint, (2017), arXiv: 1710.10903. https://doi.org/10.48550/arXiv.1710.10903
    [22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit. L. Jones, A. N. Gomez, et al., Attention is all you need, Adv. Neural Inf. Process. Syst., 30 (2017), 5998–6008.
    [23] C. Zhuang, Q. Ma, Dual Graph Convolutional Networks for Graph-Based Semi-Supervised Classification, in Proc. Int. Conf. World Wide Web, (2018), 499–508. https://doi.org/10.1145/3178876.3186116
    [24] F. Hu, Y. Zhu, S. Wu, L. Wang, T. Tan, Hierarchical Graph Convolutional Networks for Semi-supervised Node Classification, in Proc. Int. Joint Conf. Artif. Intell., (2019), 4532–4539. https://doi.org/10.24963/ijcai.2019/630
    [25] Y. Zhang, S. Pal, M. Coates, D. Ü stebay, Bayesian graph convolutional neural networks for semi-supervised classification, in Proc. Int. Joint Conf. Artif. Intell., 33 (2019), 5829–5836. https://doi.org/10.1609/aaai.v33i01.33015829
    [26] Y. Luo, R. Ji, T. Guan, J. Yu, P. Liu, Y. Yang, Every node counts: Self-ensembling graph convolutional networks for semi-supervised learning, Pattern Recognit., 106 (2020), 107451. https://doi.org/10.1016/j.patcog.2020.107451 doi: 10.1016/j.patcog.2020.107451
    [27] P. Gong, L. Ai, Neighborhood Adaptive Graph Convolutional Network for Node Classification, IEEE Access, 7 (2019), 170578–170588. https://doi.org/10.1109/ACCESS.2019.2955487 doi: 10.1109/ACCESS.2019.2955487
    [28] I. Chami, Z. Ying, C. Ré, J. Leskovec, Hyperbolic graph convolutional neural networks, in Proc. Adv. Neural Inf. Process. Syst., (2019), 4868–4879.
    [29] J. Dai, Y. Wu, Z. Gao, Y. Jia, A Hyperbolic-to-Hyperbolic Graph Convolutional Network, in 2021 IEEE/CVF Conf. Computer Vision Pattern Recogn. (CVPR), (2021), 154–163. https://doi.org/10.1109/CVPR46437.2021.00022
    [30] S. Rhee, S. Seo, S. Kim, Hybrid Approach of Relation Network and Localized Graph Convolutional Filtering for Breast Cancer Subtype Classification, in 2018 Int. Joint Conf. Artif. Intell., (2018), 3527–3534. https://doi.org/10.24963/ijcai.2018/490
    [31] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, Neural Message Passing for Quantum Chemistry, in 2017 Int. Conf. Machine Learn., (2017), 1263–1272.
    [32] M. Zhang, Z. Cui, M. Neumann, Y. Chen, An End-to-End Deep Learning Architecture for Graph Classification, in Proc. Artif. Intell., (2018), 4438–4445. https://doi.org/10.1609/aaai.v32i1.11782
    [33] R. Ying, J. You, C. Morris, Hierarchical graph representation learning with differentiable pooling, in Proc. 32nd Int. Conf. Neural Inf. Process. Syst., (2018), 4805–4815.
    [34] Y. Ma, S. Wang, C. C Aggarwal, J. Tang, Graph convolutional networks with eigenpooling, in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., (2019), 723–731. https://doi.org/10.1145/3292500.3330982
    [35] J. Lee, I. Lee, J. Kang, Self-attention graph pooling, in Proc. 36th Int. Conf. Machine Learn., (2019), 3734–3743. Available from: http://proceedings.mlr.press/v97/lee19c/lee19c.pdf
    [36] C. Cangea, P. Velickovic, N. Jovanovic, T. Kipf, P. Lio, Towards sparse hierarchical graph classifiers, in Proc. Adv. Neural Inf. Process. Syst., (2018). https://doi.org/10.48550/arXiv.1811.01287
    [37] H. Gao, S. Ji, Graph U-Nets, in Proc. 36th Int. Conf. Machine Learn., (2019), 2083–2092. https://doi.org/10.1109/TPAMI.2021.3081010
    [38] H. Gao, Z. Wang, S. Ji, Large-Scale Learnable Graph Convolutional Networks, in Proc. Knowl. Disc. Data Min., (2018), 1416–1424. https://doi.org/10.1145/3219819.3219947
    [39] W. Chiang, X. Liu, S. Si, Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks, in Proc. Knowl. Disc. Data Min., (2019), 257–266. https://doi.org/10.1145/3292500.3330925
    [40] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, Q. Gu, Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks, in Proc. Adv. Neural Inf. Process. Syst., (2019), 11249–11259.
    [41] J. Wang, Y. Wang, Z. Yang, Bi-GCN: Binary Graph Convolutional Network, in 2021 IEEE/CVF Conf. Comput. Vision Pattern Recogn. (CVPR), (2021), 1561–1570. https://doi.org/10.1109/CVPR46437.2021.00161
    [42] F. Monti, K. Otness, M. M. Bronstein, MOTIFNET: A Motif-Based Graph Convolutional Network for Directed Graphs, in Proc. IEEE Data Sci. Workshop, (2018), 225–228. https://doi.org/10.1109/DSW.2018.8439897
    [43] J. Du, S. Zhang, G. Wu, J. M. F. Moura, S. Kar, Topology adaptive graph convolutional networks, arXiv preprint, (2017), arXiv: 1710.10370.
    [44] E. Yu, Y. Wang, Y. Fu, D. B. Chen, M. Xie, Identifying critical nodes in complex networks via graph convolutional networks, Knowl.-Based Syst., 198 (2020), 105893. https://doi.org/10.1016/j.knosys.2020.105893 doi: 10.1016/j.knosys.2020.105893
    [45] C. Li, X. Qin, X. Xu, D. Yang, G. Wei, Scalable Graph Convolutional Networks with Fast Localized Spectral Filter for Directed Graphs, IEEE Access, 8 (2020), 105634–105644. https://doi.org/10.1109/ACCESS.2020.2999520 doi: 10.1109/ACCESS.2020.2999520
    [46] S. Abu-El-Haija, A. Kapoor, B. Perozzi, J. Lee, N-GCN: Multi-scale Graph Convolution for Semi-supervised Node Classification, in Proc. Conf. Uncertainty in Artif. Intell., (2019), 841–851.
    [47] S. Wan, C. Gong, P. Zhong, B. Du, L. Zhang, J. Yang, Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification, IEEE Trans. Geosci. Remote. Sens., 58 (2020), 3162–3177. https://doi.org/10.1109/TGRS.2019.2949180 doi: 10.1109/TGRS.2019.2949180
    [48] R. Liao, Z. Zhao, R. Urtasun, R. S. Zemel, LanczosNet: Multi-Scale Deep Graph Convolutional Networks, arXiv preprint., (2019), arXiv: 1901.01484. Available from: https://openreview.net/pdf?id = BkedznAqKQ
    [49] S. Luan, M. Zhao, X. Chang, D. Precup, Break the Ceiling: Stronger Multi-scale Deep Graph Convolutional Networks, in Proc. Conf. Workshop on Neural Inform. Process. Syst., 32 (2019), 10943–10953. Available from: https://proceedings.neurips.cc/paper_files/paper/2019/file/ccdf3864e2fa9089f9eca4fc7a48ea0a-Paper.pdf
    [50] F. Manessi, A. Rozza, M. Manzo, Dynamic Graph Convolutional Networks, Pattern Recogn., 97 (2020), 107000. https://doi.org/10.1016/j.patcog.2019.107000 doi: 10.1016/j.patcog.2019.107000
    [51] A. Pareja, G. Domeniconi, J. Chen, T. Ma, T. Suzumura, EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs, in Proc. Int. Joint Conf. Artif. Intell., (2020), 5363–5370. https://doi.org/10.1609/aaai.v34i04.5984
    [52] Z. Qiu, K. Qiu, J. Fu, D. Fu, DGCN: Dynamic Graph Convolutional Network for Efficient Multi-Person Pose Estimation, in Proc. Int. Joint Conf. Artif. Intell., (2020), 11924–11931. https://doi.org/10.1609/aaai.v34i07.6867
    [53] T. Song, Z. Cui, Y. Wang, W. Zheng, Q. Ji, Dynamic Probabilistic Graph Convolution for Facial Action Unit Intensity Estimation, in Proc. IEEE Conf. Comput. Vision Pattern Recogn., (2021), 4845–4854. https://doi.org/10.1109/CVPR46437.2021.00481
    [54] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. Berg, I. Titov, M. Welling, Modeling Relational Data with Graph Convolutional Networks, In The Semantic Web: 15th Int. Conf., ESWC 2018, Heraklion, Crete, Greece, June 3–7, 2018, 593–607. https://doi.org/10.1007/978-3-319-93417-4_38
    [55] Z. Huang, X. Li, Y. Ye, M. K. Ng, MR-GCN: Multi-Relational Graph Convolutional Networks based on Generalized Tensor Product, in Proc. Int. Joint Conf. Artif. Intell., (2020), 1258–1264. https://doi.org/10.24963/ijcai.2020/175
    [56] J. Chen, L. Pan, Z. Wei, X. Wang, C. W. Ngo, T. S. Chua, Zero-Shot Ingredient Recognition by Multi-Relational Graph Convolutional Network, in Proc. Int. Joint Conf. Artif. Intell., 34 (2020), 10542–10550. https://doi.org/10.1609/aaai.v34i07.6626
    [57] P. Gopalan, S. Gerrish, M. Freedman, D. Blei, D. Mimno, Scalable inference of overlapping communities, in Proc. Conf. Workshop on Neural Inform. Process. Syst., (2012), 2249–2257.
    [58] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC superpixels compared to state-of-the-art superpixel methods, IEEE Trans. Pattern Anal. Mach. Intell., 34 (2012), 2274–2282. https://doi.org/10.1109/TPAMI.2012.120 doi: 10.1109/TPAMI.2012.120
    [59] W. Zheng, P. Jing, Q. Xu, Action Recognition Based on Spatial Temporal Graph Convolutional Networks, in Proc. 3rd Int. Conf. Comput. Sci. Appl. Eng., 118 (2019), 1–5. https://doi.org/10.1145/3331453.3361651
    [60] D. Tian, Z. Lu, X. Chen, L. Ma, An attentional spatial temporal graph convolutional network with co-occurrence feature learning for action recognition, Multimed. Tools Appl., 79 (2020), 12679–12697. https://doi.org/10.1007/s11042-020-08611-4 doi: 10.1007/s11042-020-08611-4
    [61] Y. Chen, G. Ma, C. Yuan, B. Li, H. Zhang, F. Wang, et al., Graph convolutional network with structure pooling and joint-wise channel attention for action recognition, Pattern Recogn., 103 (2020), 107321. https://doi.org/10.1016/j.patcog.2020.107321 doi: 10.1016/j.patcog.2020.107321
    [62] J. Dong, Y. Gao, H. J. Lee, H. Zhou, Y. Yao, Z. Fang, et al., Action Recognition Based on the Fusion of Graph Convolutional Networks with High Order Features, Appl. Sci., 10 (2020), 1482. https://doi.org/10.3390/app10041482 doi: 10.3390/app10041482
    [63] Z. Chen, S. Li, B. Yang, Q. Li, H. Liu, Multi-Scale Spatial Temporal Graph Convolutional Network for Skeleton-Based Action Recognition, in Proc. Int. Joint Conf. Artif. Intell., 35 (2021), 1113–1122. https://doi.org/10.1609/aaai.v35i2.16197
    [64] Y. Bin, Z. Chen, X. Wei, X. Chen, C. Gao, N. Sang, Structure-aware human pose estimation with graph convolutional networks, Pattern Recogn., 106 (2020), 107410. https://doi.org/10.1016/j.patcog.2020.107410 doi: 10.1016/j.patcog.2020.107410
    [65] R. Wang, C. Huang, X. Wang, Global Relation Reasoning Graph Convolutional Networks for Human Pose Estimation, IEEE Access, 8 (2020), 38472–38480. https://doi.org/10.1109/ACCESS.2020.2973039 doi: 10.1109/ACCESS.2020.2973039
    [66] T. Sofianos, A. Sampieri, L. Franco, F. Galasso, Space-Time-Separable Graph Convolutional Network for Pose Forecasting, in Proc. IEEE/ICCV Int. Conf. Comput. Vision, (2021), 11209–11218. https://doi.org/10.48550/arXiv.2110.04573
    [67] Z. Zou, W. Tang, Modulated Graph Convolutional Network for 3D Human Pose Estimation, in Proc. ICCV, (2021), 11457–11467. https://doi.org/10.1109/ICCV48922.2021.01128
    [68] B. Yu, H. Yin, Z. Zhu, Spatio-Temporal Graph Convolutional Networks: A Deep Learning Framework for Traffic Forecasting, in Proc. Int. Joint Conf. Artif. Intell., (2018), 3634–3640. https://doi.org/10.24963/ijcai.2018/505
    [69] Y. Han, S. Wang, Y. Ren, C. Wang, P. Gao, G. Chen, Predicting Station-Level Short-Term Passenger Flow in a Citywide Metro Network Using Spatiotemporal Graph Convolutional Neural Networks, ISPRS Int. J. Geo-Inform., 8 (2019), 243. https://doi.org/10.3390/ijgi8060243 doi: 10.3390/ijgi8060243
    [70] B. Zhao, X. Gao, J. Liu, J. Zhao, C. Xu, Spatiotemporal Data Fusion in Graph Convolutional Networks for Traffic Prediction, IEEE Access, 8 (2020), 76632–76641. https://doi.org/10.1109/ACCESS.2020.2989443 doi: 10.1109/ACCESS.2020.2989443
    [71] L. Ge, H. Li, J. Liu, A. Zhou, Temporal Graph Convolutional Networks for Traffic Speed Prediction Considering External Factors, in Proc. Int. Conf. Mobile Data Manag., (2019), 234–242. https://doi.org/10.1109/MDM.2019.00-52
    [72] L. Ge, S. Li, Y. Wang, F. Chang, K. Wu, Global Spatial-Temporal Graph Convolutional Network for Urban Traffic Speed Prediction, Appl. Sci.-basel, 10 (2020), 1509. https://doi.org/10.3390/app10041509 doi: 10.3390/app10041509
    [73] P. Han, P. Yang, P. Zhao, S. Shang, Y. Liu, J. Zhou, et al., GCN-MF: Disease-Gene Association Identification by Graph Convolutional Networks and Matrix Factorization, Knowl. Disc. Data Min., (2019), 705–713. https://doi.org/10.1145/3292500.3330912 doi: 10.1145/3292500.3330912
    [74] J. Li, Z. Li, R. Nie, Z. You, W. Bao, FCGCNMDA: predicting miRNA-disease associations by applying fully connected graph convolutional networks, Mol. Genet. Genom., 295 (2020), 1197–1209. https://doi.org/10.1007/s00438-020-01693-7 doi: 10.1007/s00438-020-01693-7
    [75] L. Wang, Z. You, Y. Li, K. Zhang, Y. Huang, GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm, PLoS Comput. Biol., 16 (2020), e1007568. https://doi.org/10.1371/journal.pcbi.1007568 doi: 10.1371/journal.pcbi.1007568
    [76] C. Wang, J. Guo, N. Zhao, Y. Liu, X. Liu, G. Liu, et al., A Cancer Survival Prediction Method Based on Graph Convolutional Network, IEEE Trans. NanoBiosci., 19 (2019), 117–126. https://doi.org/10.1109/TNB.2019.2936398 doi: 10.1109/TNB.2019.2936398
    [77] H. Chen, F. Zhuang, L. Xiao, L. Ma, H. Liu, R. Zhang, et al., AMA-GCN: Adaptive Multi-layer Aggregation Graph Convolutional Network for Disease Prediction, in Proc. IJCAI, (2021), 2235–2241. https://doi.org/10.24963/ijcai.2021/308
    [78] K. Gopinath, C. Desrosiers, H. Lombaert, Learnable Pooling in Graph Convolutional Networks for Brain Surface Analysis, IEEE Trans. Pattern Anal. Mach. Intell., 44 (2022), 864–876. https://doi.org/10.1109/TPAMI.2020.3028391 doi: 10.1109/TPAMI.2020.3028391
    [79] R. Ying, R. He, K. Chen, Graph Convolutional Neural Networks for Web-Scale Recommender Systems, in Proc. Knowl. Disc. Data Min., (2018), 974–983. https://doi.org/10.1145/3219819.3219890
    [80] X. Xia, H. Yin, J. Yu, Q. Wang, L. Cui, X. Zhang, Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation, in Proc. Int. Joint Conf. Artif. Intell., 35 (2021), 4503–4511. https://doi.org/10.1609/aaai.v35i5.16578
    [81] H. Chen, L. Wang, Y. Lin, C. Yeh, F. Wang, H. Yang, Structured Graph Convolutional Networks with Stochastic Masks for Recommender Systems, in Proc. SIGIR, (2021), 614–623. https://doi.org/10.1145/3404835.3462868
    [82] L. Chen, Y. Xie, Z. Zheng, H. Zheng, J. Xie, Friend Recommendation Based on Multi-Social Graph Convolutional Network, IEEE Access, 8 (2020), 43618–43629. https://doi.org/10.1109/ACCESS.2020.2977407 doi: 10.1109/ACCESS.2020.2977407
    [83] T. Zhong, S. Zhang, F. Zhou, K. Zhang, G. Trajcevski, J. Wu, Hybrid graph convolutional networks with multi-head attention for location recommendation, World Wide Web, 23 (2020), 3125–33151. https://doi.org/10.1007/s11280-020-00824-9 doi: 10.1007/s11280-020-00824-9
    [84] T. H. Nguyen, R. Grishman, Graph Convolutional Networks with Argument-Aware Pooling for Event Detection, in Proc. AAAI Confer. Artif. Intell., 32 (2018). https://doi.org/10.1609/aaai.v32i1.12039
    [85] Z. Guo, Y. Zhang, W. Lu, Attention Guided Graph Convolutional Networks for Relation Extraction, Ann. Meet. Assoc. Comput. Linguist., (2019), 241–251. https://doi.org/10.18653/v1/P19-1024 doi: 10.18653/v1/P19-1024
    [86] Y. Hong, Y. Liu, S. Yang, K. Zhang, A. Wen, J. Hu, Improving Graph Convolutional Networks Based on Relation-Aware Attention for End-to-End Relation Extraction, IEEE Access, 8 (2020), 51315–51323. https://doi.org/10.1109/ACCESS.2020.2980859 doi: 10.1109/ACCESS.2020.2980859
    [87] Z. Meng, S. Tian, L. Yu, Y. Lv, Joint extraction of entities and relations based on character graph convolutional network and Multi-Head Self-Attention Mechanism, J. Exp. Theor. Artif. Intell., 33 (2021), 349–362. https://doi.org/10.1080/0952813X.2020.1744198 doi: 10.1080/0952813X.2020.1744198
    [88] L. Yao, C. Mao, Y. Luo, Graph Convolutional Networks for Text Classification, Artif. Intell., (2019), 7370–7377. https://doi.org/10.1609/aaai.v33i01.33017370 doi: 10.1609/aaai.v33i01.33017370
    [89] M. Chandra, D. Ganguly, P. Mitra, B. Pal, J. Thomas, NIP-GCN: An Augmented Graph Convolutional Network with Node Interaction Patterns, in Proc. SIGIR, (2021), 2242–2246. https://doi.org/10.1145/3404835.3463082
    [90] L. Xiao, X. Hu, Y. Chen, Y. Xue, D. Gu, B. Chen, et al., Targeted Sentiment Classification Based on Attentional Encoding and Graph Convolutional Networks, Appl. Sci., 10 (2020), 957. https://doi.org/10.3390/app10030957 doi: 10.3390/app10030957
    [91] P. Zhao, L. Hou, O. Wu, Modeling sentiment dependencies with graph convolutional networks for aspect-level sentiment classification, Knowl.-Based Syst., 193 (2020), 105443. https://doi.org/10.1016/j.knosys.2019.105443 doi: 10.1016/j.knosys.2019.105443
    [92] S. Jiang, Q. Chen, X. Liu, B. Hu, L. Zhang, Multi-hop Graph Convolutional Network with High-order Chebyshev Approximation for Text Reasoning, arXiv preprint, (2021), arXiv: 2106.05221. https://doi.org/10.18653/v1/2021.acl-long.513
    [93] R. Li, H. Chen, F. Feng, Z. Ma, X. Wang, E. Hovy, Dual Graph Convolutional Networks for Aspect-based Sentiment Analysis, in Proc. 59 Ann. Meet. Assoc. Comput. Linguist. And 11th Int. joint Conf. Nat. Language process., 1 (2021), 6319–6329.
    [94] L. Lv, J. Cheng, N. Peng, M. Fan, D. Zhao, J. Zhang, Auto-encoder based Graph Convolutional Networks for Online Financial Anti-fraud, IEEE Comput. Intell. Financ. Eng. Econ., (2019), 1–6. https://doi.org/10.1109/CIFEr.2019.8759109 doi: 10.1109/CIFEr.2019.8759109
    [95] C. Li, D. Goldwasser, Encoding Social Information with Graph Convolutional Networks for Political Perspective Detection in News Media, in Proc. 57th Ann. Meet. Assoc. Comput. Linguist., (2019), 2594–2604. https://doi.org/10.18653/v1/p19-1247
    [96] Y. Sun, T. He, J. Hu, H. Hang, B. Chen, Socially-Aware Graph Convolutional Network for Human Trajectory Prediction, in 2019 IEEE 3rd Inf. Technol. Network. Electron. Autom. Control Conf. (ITNEC), (2019), 325–333. https://doi.org/10.1109/ITNEC.2019.8729387
    [97] J. Chen, J. Li, M. Ahmed, J. Pang, M. Lu, X. Sun, Next Location Prediction with a Graph Convolutional Network Based on a Seq2seq Framework, KSII Trans. Internet Inf. Syst., 14 (2020), 1909–1928. https://doi.org/10.3837/tiis.2020.05.003 doi: 10.3837/tiis.2020.05.003
    [98] X. Li, Y. Xin, C. Zhao, Y. Yang, Y. Chen, Graph Convolutional Networks for Privacy Metrics in Online Social Networks, Appl. Sci.-Basel, 10 (2020), 1327. https://doi.org/10.3390/app10041327 doi: 10.3390/app10041327
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1732) PDF downloads(277) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog