Research article

Global stability of multi-group SEIQR epidemic models with stochastic perturbation in computer network

  • Received: 06 February 2023 Revised: 03 April 2023 Accepted: 24 April 2023 Published: 29 May 2023
  • In this paper, a class of multi-group SEIQR models with random perturbation in computer network is investigated. The existence and uniqueness of global positive solution with any positive initial value are obtained. The sufficient conditions on the asymptotic behavior of solutions around the disease-free equilibrium and endemic equilibrium of the corresponding deterministic model are established. Furthermore, the existence and uniqueness of stationary distribution are also obtained. Lastly, the analytical results are illustrated by the numerical simulations.

    Citation: Ramziya Rifhat, Kai Wang, Lei Wang, Ting Zeng, Zhidong Teng. Global stability of multi-group SEIQR epidemic models with stochastic perturbation in computer network[J]. Electronic Research Archive, 2023, 31(7): 4155-4184. doi: 10.3934/era.2023212

    Related Papers:

  • In this paper, a class of multi-group SEIQR models with random perturbation in computer network is investigated. The existence and uniqueness of global positive solution with any positive initial value are obtained. The sufficient conditions on the asymptotic behavior of solutions around the disease-free equilibrium and endemic equilibrium of the corresponding deterministic model are established. Furthermore, the existence and uniqueness of stationary distribution are also obtained. Lastly, the analytical results are illustrated by the numerical simulations.



    加载中


    [1] R. M. May, A. L. Lloyd, Infection dynamics on scale-free networks, Phys. Rev. E, 64 (2001), 1–3. https://doi.org/10.1103/PhysRevE.64.066112 doi: 10.1103/PhysRevE.64.066112
    [2] B. K. Mishra, D. K. Saini, SEIRS epidemic model with delay for transmission of malicious objects in computer network, Appl. Math. Comput., 188 (2007), 1476–1482. https://doi.org/10.1016/j.amc.2006.11.012 doi: 10.1016/j.amc.2006.11.012
    [3] B. K. Mishra, D. Saini, Mathematical models on computer virus, Appl. Math. Comput., 187 (2007), 929–936. https://doi.org/10.1016/j.amc.2006.09.062 doi: 10.1016/j.amc.2006.09.062
    [4] B. K. Mishra, N. Jha, Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Appl. Math. Comput., 190 (2007), 1207–1212. https://doi.org/10.1016/j.amc.2007.02.004 doi: 10.1016/j.amc.2007.02.004
    [5] H. Yuan, G. Chen, Network virus-epidemic model with the point-to-group information propagation, Appl. Math. Comput., 206 (2008), 357–367. https://doi.org/10.1016/j.amc.2008.09.025 doi: 10.1016/j.amc.2008.09.025
    [6] J. B. Shukla, G. Singh, P. Shukla, A. Tripathi, Modeling and analysis of the effects of antivirus software on an infected computer network, Appl. Math. Comput., 227 (2014), 11–18. https://doi.org/10.1016/j.amc.2013.10.091 doi: 10.1016/j.amc.2013.10.091
    [7] M. Sun, Q. Liu, An SIS epidemic model with time delay and stochastic perturbation on heterogeneous networks, Math. Biosci. Eng., 18 (2021), 6790–6805. https://doi.org/10.3934/mbe.2021337 doi: 10.3934/mbe.2021337
    [8] R. Zhao, Q. Liu, M. Sun, Dynamical behavior of a stochastic SIQS epidemic model on scale-free networks, J. Appl. Math. Comput., 68 (2022), 813–838. https://doi.org/10.1007/s12190-021-01550-9 doi: 10.1007/s12190-021-01550-9
    [9] Y. E. Ansari, A. E. Myr, L. Omari, Deterministic and stochastic study for an infected computer network model powered by a system of antivirus programs, Discrete Dyn. Nat. Soc., (2017), 3540278. https://doi.org/10.1155/2017/3540278 doi: 10.1155/2017/3540278
    [10] Y. Xu, X. Sun, H. Hu, Extinction and stationary distribution of a stochastic SIQR epidemic model with demographics and non-monotone incidence rate on scale-free networks, J. Appl. Math. Comput., 68 (2022), 3367–3395. https://doi.org/10.1007/s12190-021-01645-3 doi: 10.1007/s12190-021-01645-3
    [11] R. Ikram, A. Khan, M. Zahri, A. Saeed, M. Yavuz, P. Kumam, Extinction and stationary distribution of a stochastic COVID-19 epidemic model with time-delay, Comput. Biol. Med., 141 (2022), 105115. https://doi.org/10.1016/j.compbiomed.2021.105115 doi: 10.1016/j.compbiomed.2021.105115
    [12] M. Naim, Y. Sabbar, A. Zeb, Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption, Math. Modell. Numer. Simul. Appl., 2 (2022), 164–176. https://doi.org/10.53391/mmnsa.2022.013 doi: 10.53391/mmnsa.2022.013
    [13] H. Joshi, M. Yavuz, S. Townley, B. K. Jha, Stability analysis of a non-singular fractional-order covid-19 model with nonlinear incidence and treatment rate, Phys. Scr., 98 (2023), 045216. https://doi.org/10.1088/1402-4896/acbe7a doi: 10.1088/1402-4896/acbe7a
    [14] M. Yavuz, F. Özköse, M. Susam, M. Kalidass, A new modeling of fractional-order and sensitivity analysis for Hepatitis-B disease with real data, Fractal Fract., 7 (2023), 165. https://doi.org/10.3390/fractalfract7020165 doi: 10.3390/fractalfract7020165
    [15] A. Din, M. Z. Abidin, Analysis of fractional-order vaccinated Hepatitis-B epidemic model with Mittag-Leffler kernels, Math. Modell. Numer. Simul. Appl., 2 (2022), 59–72. https://doi.org/10.53391/mmnsa.2022.006 doi: 10.53391/mmnsa.2022.006
    [16] H. Joshi, B. K. Jha, M. Yavuz, Modelling and analysis of fractional-order vaccination model for control of COVID-19 outbreak using real data, Math. Biosci. Eng., 20 (2023), 213–240. https://doi.org/10.3934/mbe.2023010 doi: 10.3934/mbe.2023010
    [17] Y. Sabbar, M. Yavuz, F. Özköse, Infection eradication criterion in a general epidemic model with logistic growth, quarantine strategy, media intrusion, and quadratic perturbation, Mathematics, 10 (2022), 4213. https://doi.org/10.3390/math10224213 doi: 10.3390/math10224213
    [18] B. K. Mishra, N. Jha, SEIQRS model for the transmission of malicious objects in computer network, Appl. Math. Modell., 34 (2010), 710–715. https://doi.org/10.1016/j.apm.2009.06.011 doi: 10.1016/j.apm.2009.06.011
    [19] B. K. Mishra, A. K. Singh, Two quarantine models on the attack of malicious objects in computer network, Math. Probl. Eng., (2012), 407064. https://doi.org/10.1155/2012/407064 doi: 10.1155/2012/407064
    [20] H. Guo, M. Y. Li, Z. Shuai, A graph-theoretic approach to the method of global Lyapunov functions, Proc. Am. Math. Soc., 136 (2008), 2793–2802. https://doi.org/10.1090/S0002-9939-08-09341-6 doi: 10.1090/S0002-9939-08-09341-6
    [21] M. Y. Li, Z. Shuai, Global-stability problem for coupled systems of differential equation on networks, J. Differ. Equations, 248 (2010), 1–20. https://doi.org/10.1016/j.jde.2009.09.003 doi: 10.1016/j.jde.2009.09.003
    [22] H. Guo, M. Y. Li, Z. Shuai, Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14 (2006), 259–284.
    [23] Z. Wang, X. Fan, Q. Han, Global stability of deterministic and stochastic multigroup SEIQR models in computer network, Appl. Math. Modell., 37 (2013), 8673–8686. https://doi.org/10.1016/j.apm.2013.07.037 doi: 10.1016/j.apm.2013.07.037
    [24] A. L. Krause, L. Kurowski, K. Yawar, R. A. Van Gorder, Stochastic epidemic metapopulation models on networks: SIS dynamics and control strategies, J. Theor. Biol., 449 (2018), 35–52. https://doi.org/10.1016/j.jtbi.2018.04.023 doi: 10.1016/j.jtbi.2018.04.023
    [25] Y. El Ansari, A. El Myr, L. Omari, Deterministic and stochastic study for an infected computer network model powered by a system of antivirus programs, Discrete Dyn. Nat. Soc., 2017, 3540278. https://doi.org/10.1155/2017/3540278 doi: 10.1155/2017/3540278
    [26] A. Caruso, M. E. Gargano, D. Valenti, A. Fiasconaro, B. Spagnolo, Cyclic fluctuations, climatic changes and role of noise in planktonic foraminifera in the mediterranean sea, Fluctuation Noise Lett., 5 (2005), 349–355. https://doi.org/10.1142/S0219477505002768 doi: 10.1142/S0219477505002768
    [27] C. Zhang, Y. Zhao, Y. Wu, S. Deng, A stochastic dynamic model of computer viruses, Discrete Dyn. Nat. Soc., (2012), 264874. https://doi.org/10.1155/2012/264874 doi: 10.1155/2012/264874
    [28] C. Yuan, D. Jiang, D. O'Regan, R. P. Agarwal, Stochastically asymptotically stability of the multi-group SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2501–2516. https://doi.org/10.1016/j.cnsns.2011.07.025 doi: 10.1016/j.cnsns.2011.07.025
    [29] J. Yu, D. Jiang, N. Shi, Global stability of two-group SIR model with random perturbation, J. Math. Anal. Appl., 360 (2009), 235–244. https://doi.org/10.1016/j.jmaa.2009.06.050 doi: 10.1016/j.jmaa.2009.06.050
    [30] R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973. https://doi.org/10.1515/9780691206912
    [31] C. Ji, D. Jiang, N. Shi, Multigroup SIR epidemic model with stochastic perturbation, Phys. A, 390 (2011), 1747–1762. https://doi.org/10.1016/j.physa.2010.12.042 doi: 10.1016/j.physa.2010.12.042
    [32] A. Berman, R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
    [33] J. D. Brown, Microprobe analysis, X-Ray Spectrom., 3 (1974), 28. https://doi.org/10.1002/xrs.1300030415 doi: 10.1002/xrs.1300030415
    [34] R. Z. Khas'Miniskii, Stochastic Stability of Differential Equation, Springer Dordrecht, The Netherlands, 1980.
    [35] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Asymptotic behavior of multi-group epidemic models with distributed delays, Phys. A, 467 (2017), 527–541. https://doi.org/10.1016/j.physa.2016.10.034 doi: 10.1016/j.physa.2016.10.034
    [36] D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [37] B. Zhou, X. Zhang, D. Jiang, Dynamics and density function analysis of a stochastic SVI epidemic model with half saturated incidence rate, Chaos Solitons Fractals, 137 (2020), 109865. https://doi.org/10.1016/j.chaos.2020.109865 doi: 10.1016/j.chaos.2020.109865
    [38] B. Zhou, D. Jiang, Y. Dai, T. Hayat, A. Alsaedi, Stationary distribution and probability density function of a stochastic SVIS epidemic model with standard incidence and vaccination strategies, Chaos Solitons Fractals, 143 (2021), 110601. https://doi.org/10.1016/j.chaos.2020.110601 doi: 10.1016/j.chaos.2020.110601
    [39] J. Ge, W. Zuo, D. Jiang, Stationary distribution and density function analysis of a stochastic epidemic HBV model, Math. Comput. Simul., 191 (2022), 232–255. https://doi.org/10.1016/j.matcom.2021.08.003 doi: 10.1016/j.matcom.2021.08.003
    [40] B. Zhou, B. Han, D. Jiang, T. Hayat, A. Alsaedi, Stationary distribution, extinction and probability density function of a stochastic vegetation-water model in arid ecosystems, J. Nonlinear Sci., 32 (2022), 30. https://doi.org/10.1007/s00332-022-09789-7 doi: 10.1007/s00332-022-09789-7
    [41] D. H. Nguyen, G. Yin, C. Zhu, Long-term analysis of a stochastic SIRS model with general incidence rates, SIAM J. Appl. Math., 80 (2020), 814–838. https://doi.org/10.1137/19M1246973 doi: 10.1137/19M1246973
    [42] S. Pan, Q. Zhang, M. Anke, Near-optimal control of a stochastic vegetation-water system with reaction diffusion, Math. Meth. Appl. Sci., 43 (2020), 6043–6061. https://doi.org/10.1002/mma.6346 doi: 10.1002/mma.6346
    [43] S. Pan, Q. Zhang, A. Meyer-Baese, Stationary distribution of a stochastic vegetation-water system with reaction-diffusion, Appl. Math. Lett., 123 (2022), 107589. https://doi.org/10.1016/j.aml.2021.107589 doi: 10.1016/j.aml.2021.107589
    [44] B. Han, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Stationary distribution and extinction of a stochastic staged progression AIDSdel with staged treatment and second-order perturbation, Chaos Solitons Fractals, 140 (2020), 110238. https://doi.org/10.1016/j.chaos.2020.110238 doi: 10.1016/j.chaos.2020.110238
    [45] B. Han, D. Jiang, B. Zhou, T. Hayat, A. Alsaedi, Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth, Chaos Solitons Fractals, 142 (2021), 110519. https://doi.org/10.1016/j.chaos.2020.110519 doi: 10.1016/j.chaos.2020.110519
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1030) PDF downloads(107) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog