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1. Introduction

As is well known, the internet world has brought great changes in the society. In reality, we know
that cyber world is being threatened by the attack of malicious objects. Malicious object is a code that
infects computer systems. There are different kinds of malicious objects such as: Worm, Virus, Trojan
horse, etc., which differ according to the way they attack computer systems and the malicious actions
they perform (see [1-3]). With the development of the computer network, malicious objects be widely
spread through a network, through an online service, through shared computer software or through a
mobile storage tool, and so on. Because of the similarity between the transmission of human infectious
diseases and transmission of malicious objects in the computer network, some authors employ the
epidemic models to describe the transmission of malicious objects in the cyber world (see [2—17]).

Considering different contact patterns, different anti-virus software, or distinct number of contacts
etc., it is more appropriate to divide individual hosts into groups in modeling epidemic disease.
Therefore, it is reasonable to propose multi-group models to describe the transmission dynamics of
malicious objects in heterogeneous host populations on computer network. At present, many scholars
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have focused their study on various forms of multi-group epidemic models (see [18-23]). They have
also proved the global stability of the unique endemic equilibrium through Lyapunov function, which
is one of the main mathematical challenges in analyzing multi-group models.  Particularly,
Wang et al. [23] proposed the following multi-group SEIQR epidemic model for describing the
transmission of malicious objects in computer network

dSe(t) = [Ax— ) BuSuDI(0) - i Sldt,

j=1
dE(1) = [; BusS KO0 = (df + @)E]dr, (L1)

dI(t) = [&E — (d] + i + 6 + yoLildt,

dOu(®) =[Sk — (d2 + i + ) Qi ldt,
dRu(D) = [yili + i Qr — diR]dt, 1<k<n,

where the total network nodes are divided into n groups of nodes, n > 2 is an integer. S(7), Ei(?),
I (1), Ok(®) and Ri(¢) express the numbers of susceptible nodes, exposed (infected but not yet
infectious) nodes, infectious nodes, quarantined nodes and recovered nodes at time ¢ in the k-th
group (1 < k < n), respectively. The definitions of all parameters in model (1.1) are listed in Table 1.
We assume that the parameters as, d,f , d,ﬁ, de, df and A, are positive and the rest of parameters in
model ( 1.1) ia nonnegative for all k. In particular, 5;; = 0 if there is no transmission of the disease
between compartments S and ;. In model (1.1) , the basic reproduction number Ry = p(M,), the
ﬁkjfk%kk
(dE+e)(d +ar+or+yi)
persistence or extinction of the disease. It is shown that, if Ry < 1, the disease-free equilibrium Ej is

globally stable in the feasible region and the disease always dies out, and if Ry > 1, a unique endemic
equilibrium E* exists and is globally stable in the interior of the feasible region, and once the disease
appears, it eventually persists at the unique endemic equilibrium level.

spectral radius of matrix M, = ( )uxns 18 @ threshold which completely determines the

Table 1. Description of parameters in model ( 1.1) .

Symbol Description

Ay influx of individuals into the kth group

Brj transmission coeflicient between compartments S and /;

& .df,d, de, d¥ natural death rates of S, Ey, Iy, O, R compartments in the kth group

€ the rate constant for nodes leaving the exposed class Ej for infective
compartment in the kth group

Ok the rate constant for nodes leaving the infective compartment /;
for quarantine compartment in the kth group

i the disease related death rate(crashing of nodes due to the attack
of malicious objects)constant in the compartments

vi and p the rates at which nodes recover temporarily after the runof anti-malicious
software and return to recovered class R from compartments /; and Qy
in the kth group
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On the other hand, there exist uncertainties and random phenomena everywhere in nature [23-27].
Environmental noises are usually considered to be harmful, which will lead to the disorder of the
dynamics [20, 21]. Nevertheless, the noises also play a positive role in the dynamics of complex
nonlinear systems, especially in interdisciplinary physical models and biomathematics models, such
as noise induced resonances, noise enhanced stability (NES) and so on [22-24,28-30]. According to
the noise source, the noises can be divided into the additive noise and the multiplicative noise. The
former is not controlled by the system and can be directly introduced to the system, while the latter is
related to system parameters and variables. The multiplicative noises can always ensure the
nonnegativity of the solution. The two main peculiarities of the presence of the multiplicative noise
are the presence of the absorbing barrier in zero population density and the phenomenon of the
anomalous fluctuations [25,31]. The noise existing in biological systems is caused by environmental
fluctuations, which is usually considered as the multiplicative white noise.  For example,
Caruso et al. [26] described the dynamic behavior of an ecosystem of two competing species by a
stochastic Lotka-Volterra model with the multiplicative white noise. The multiplicative noise models
the interaction between the environment and the species.

For human disease related epidemics, the nature of epidemic growth and spread is random due to
the unpredictability in person to person contacts.  Because of environmental noises, the
deterministic approach has some limitations in the mathematical modeling transmission of an
infectious disease, several authors began to consider the effect of white noise on the computer
network systems (see [23-27]).

There are different approaches used in the literature to introduce random perturbations into
population models, both from a mathematical and biological perspective (see [23-29,31]). One is to
perturb the positive equilibria in order for making robust the equilibria of deterministic models. In
this situation, the essence of the investigation using the approach is to check if the asymptotic stability
of the positive equilibria of deterministic models can be preserved. For example, Wang et al. [23]
investigated a multi-group SEIQR model with random perturbation around the positive equilibrium of
corresponding deterministic model, which revealed that the stochastic stability of endemic
equilibrium depends on the magnitude of the intensity of noise as well as the parameters involved
within the model. The other important approach is with parameters perturbation. We find that there
are many literatures on this approach, see [25-27] and the references cited therein. In epidemic
models, the natural death rate and the disease transmission rate are two of the key parameters to
disease transmission. And in the real situation, the natural death rate and the disease transmission rate
always fluctuate around some average value due to continuous fluctuation in the environment. For
example, El Ansari et al. [25] considered a stochastic version of model (1.1) with noises introduced in
the rate at which nodes are crashed due to reasons other than the attacks of viruses and the
transmission rate, and they proved the various conditions that control the extinction and stability of a
nonlinear mathematical spread model with stochastic perturbations.

We now turn to a continuous time SEIQRS model which takes random effects into account. In
SEIQRS model (1.1), the natural death rate df", where 1 < k < n and
(X1, X5, X3,X4,X5) = (S,E,I,Q,R), is one of the key parameters to disease transmission.
May [30] pointed out that all the parameters involved in the population model exhibit random
fluctuation as the factors controlling them are not constant. And in the real situation, the natural death

rate d always fluctuate around some average value due to continuous fluctuation in the environment.
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In this sense, d,f" can seem as a random variable Jf". More precisely, in [t,t + dt),
—dydt = —dYdt + oydBy (1), 1 <k<n, i=1,23,4,5,

where By (1) (1 <k <n,i =1,2,3,4,5) are the independent standard Brownian motion defined on the
complete probability space (2, {F;};s0, P) with a filtration {F,},» satisfying the usual conditions, and
O'izk is the intensity of By(f). The reason of adopting Gfk (1 <k <ni=1,2,3,4,5) as the intensity
of the noise for the group Sy, Ex, Iy, O and Ry, respectively, is considering the difference between
the group mobility response to infection risks. And then, in [z, + d?), —c?,f"dt is normally distributed
with mean E(—d,'df) = —d\'dt and variance Var(-d\'df) = o?dt. Due to Var(-d,'dt) = o%dt — 0
as dt — 0, this is a biologically reasonable assumption. Indeed this is a well-established way of
introducing stochastic environmental noise into biologically realistic population dynamic models.

Therefore, replace —df"dt in model (1.1) with
—dYdt = —d)'dt + opdBy(t) (1 < k < n,i = 1,2,3,4,5), and for simplicity, we replace —d,' with d."
again, then we can obtain the same SDE epidemic model as the following model (1.2) that is analog to
its deterministic version model (1.1) by introducing stochastic perturbation terms to the growth
equations of susceptible, infectious, recovered individuals to incorporate the effect of randomly
fluctuating environments:

dS«

[Ax — Zﬁkjsk(f)lj(f) — d3 S, ]dt + oS 1 dBy,

J=1

[Z,Bkjsk(t)lj(t) — (d{ + &)Ey)dt + o ExdByy, (12)

=1
d]k = [EkEk - (dli + a; + 5k + )/k)lk]dl + O'3k1kdB3k,
dQx =[Sk — (@2 + ey + 1) Qi 1dt + 04, Qxd By,
dR; [veli + i Ok — d,ka]dl + o5:RdBs,, 1<k <n.

dE;

Throughout this paper, we always assume that model (1.2) is defined on a complete probability
space (€, {F}»0, P) with a filtration {F,},»o satisfying the usual conditions (i.e., it is right continuous
and ¥ contain all P-null sets). Furthermore, we also always assume that the infection rate matrix
B = (Bij)nxn in model (1.2) is irreducible.

In this paper, we will study the asymptotic behavior of positive solutions of model (1.2) around the
disease-free and endemic equilibria of corresponding deterministic model (1.1) in probability meaning
by using the theory of graphs, Lyapunov functions method, Ito’s formula and the theory of stochastic
analysis. Then by using the theory of stationary distributions of stochastic process we will study the
existence of stationary distribution of model (1.2).

The paper is organized as follows. In Section 2, the criterion on the asymptotic behavior of positive
solutions of model (1.2) around the disease-free equilibrium of the corresponding deterministic model
is stated and proved. In Section 3, the sufficient condition the asymptotic behavior of positive solutions
of model (1.2) around the endemic equilibrium of corresponding deterministic model and the existence
of stationary distribution are stated and proved. In Section 4, we make some numerical simulations to
illustrate our analytical results. Finally, in Section 5, we give a brief conclusion.
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2. Asymptotic behavior around disease-free equilibrium of model (1.1)

We first give a lemma to show that for any positive initial value model (1.2) has a unique positive
solution defined on [0, c0).

Lemma 1. For any initial value in RY" model (1.2) has a unique positive solution defined for all t > 0
and the solution remain in RS" with probability one.

This lemma can be easily proved by using the standard arguments as in [14,18] and with the help of
Lyapunov function

V(Sk, Eka Ik, Qk’Rkal < k < I’l)
= Z[(Sk—a—alog—)+(Ek— 1 —log Ey)

=
+(Ix =1 =log i) + (Qr — 1 —log Qp) + (R — 1 — log Ry)],

where positive constant a satisfies a < mm{ S 1ﬂ; k=1,2,--- ,n}.

For deterministic model (1.1), in [23] the authors have obtained that there is a disease-free
equilibrium Ey = (59,0,0,0,0,59,0,0,0,0,---,579,0,0,0,0), where S = dS ,and if Ry < 1, then E,
is globally asymptotically stable, which means the disease will die out. Thekrefore, it is interesting to
study the stability of disease-free equilibrium for controlling the spread of infectious disease.
However, for stochastic model (1.2) there is not any disease-free equilibrium. Therefore, it is natural
to ask how we can consider the disease will be extinct. In this section we mainly through estimating
the asymptotic oscillation around equilibrium E;, of any positive solutions of stochastic model (1.2) to
reflect whether the disease in stochastic model (1.2) will die out. We have the following result.

Theorem 1. Assume that Ry < 1 and the following conditions hold

1 1
di > 01, di+ag + 0 + Y > =05, dE + & > =03,
12 2 2.1)

Eo%k, I <k<n.

Then for any positive solution (S (1), Ex(t), Ii(1), OQi(?), Ri(t), 1 < k < n) of model (1.2) one has

1
de+a/k + Ui > 50"2”(, d§>

[—o0

. 1 o A
lim sup ;E f Z{Ak(Sk(r) - _;)2 + BLEX(r) + Ci I (r)
0 %=1

A
+D Q%(r) + FiRY(r))dr < Z(bak + (T k)
where A, = (d,f - O'%k), By = i(df €& — %ng) and
: [2(d’ 5 ) 4ck€,f
= Ck +a + 0k + i) — -
k N+ e) - o]
d6? exy;

de+C¥k +u— 0% df - éo-gk’ 5

5 Crly

1 1
_0'421/(), Fi= ek(dk -3

Dk: dk(d](Q+CL’k+ﬂk—2 3

)5

Os —
dk(de + g + uy — %O’ik)
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and positive constants ay, dy, cx, ex (1 < k < n) and b will be confirmed in the proof of the theorem.

Proof. Letu, =Sy — %, Vi = Ex,wi = I, vk = Ok, 2% = R (1 < k < n), then model (1.2) becomes into
k

n n A A
duy = [- Zﬁkjuk(f)wj(l) - Z,Bkjwj(f)d—sk — df w]dt + oy (uy + d—sk)dBlk,
= = k k
n n A
dvy = [Zﬁkjuk(f)wj(f) + Z,Bkjwj(t)d_sk — (df + &)vi]dt + o vidBoy,
= k

=

dwr = [evi — (d,i +a;+ 0+ ’yk)Wk]df + oy widBsyg,
dyi = [Gowi — (@2 +  + p)yildt + oaydBuy,

dzi = [yaws + i — dizildt + o5.24dBsy.

Since B = (Bx;)uxn 18 1rreducible, then M, is also nonnegative and irreducible. Hence, by Lemma A.1
in [3], M, has a positive left eigenvector n = (11,12, -+ ,17,) such that

(nla n29 T, nn)p(MO) = (771? T’Za RS nn)MO (22)

Define a Lyapunov function as follows.

V=V +b(V2+V3)+V4+V5+V(,

df+€k n 2
Wi, Va = Xy cowps
Vs = i dkyi and Vg = X7, ekzi, where positive constants ay, ¢k, dy, e, (1 < k < n) and b will be
determined later. By Ito’s formula, we get

; — 1 yn 2 —1lymn 2 —_\"n €Tk
with Vi = 3 Y (e +vi), Vo = 5 Yo awu, Vi = X (dksﬂk)(dimkwkﬂk)(vk'l'

n A n
dv = LVdt+ Z 0'1k(uk + d—;)[(l + bak)uk + Vk]dBlk + Z O Vilur + vi
k=1 k

k=1
bwkek - bwk
+ dBy + ) oxw 2.3
(d,f+ek)(d,§+ak+5k+yk)] % ; * "[d,{+ak+5k+yk 2-3)
+Cka]dB3k + Z dk0'4ky]%dB4k + Z ekO-SkZ]%dBSk
k=1 k=1
with LV = LV, + b(LV, + LV3) + LV, + LVs + LVg, where
n n n A n
LVi= D G+ vol= ) rus(w;(n) = 3 Biwi()— = diue+ 3 Brjus(hw;(0)
k=1 j=1 j=1 k j=1
+Zn1,8 ~w~(t)ﬁ—(dE+e)v]+Zn:[a2( L 2.4
kjWj 45 k k)VEk 16\ Uk pS 2% Vi (2.4)
j=1 k k=1 k
X 1 A
< = DN g + 1A + 6= SOV + (] + df + e - Yo,
k=1 k
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n

L= ) el Zﬂk,uk(nwxr) Zﬁkjw]m — duy]

j=1

k
+ Z Qo + Z akalk(—s (2.5)
kAk

IA

- Z adl(d - o2l + Z ﬁk, = Eu(ow;(r) — (T2

k

and

LV3 = had

n n A
[ Beitte@wi(0)+ ) Bgwi(t)—
j=1 k

= (df + Gk)(dli +ap+ 0, + ’}/k) e

d]f+€k

—(d{ + )i + vy — (dy + ay + O + Yi)wi]

€k

AN B jWr€x n
Hw (1) —
Z Z (df + e)(d! + o + 5k + v0) U i) Z; WiWi

kl]l

Z Z Brjwre Wi,
(df + e)(d! + ap + 5k + i) dS Wi

k=1 j=1

IA

Note from (2.2) that

j Ay
Wi + Z Z (dE Brjwi€ Wj(f) (Ro — Dnw,

ey +ek)(d1+cyk+5k+yk)ds

where w = (W, wa, -+ ,w,). If Ry < 1, then

LVs < Z Z @ il (w0, (2.6)

L + ) (d] + ay + 6 + yi)

Furthermore, we also have

LVi= = el2(d]+ g+ 6 + 70— o3 we +2 ) crewev,

= k=1
LVs = — Z dk[z(d +ap + ) - 0'4k )’k +2 Z diOkWiYks 2.7)
= k=1
LVe= - Z ek[2d,lf - ng]zi +2 Z exykwiix + 2 Z i YiZk-
k=1 k=1 k=1
and
2 [(d + &) - 1 v; i ‘
CLEWLV € 0' Wi
KEWiVe < k 2%k [(dE+ek)—§0'§k] k
0 1 dkfsi 2
2di6wiy < dil(df + ap + ) — 0'4k])’k 0 1 o Ve
. di + o+ py — 507, (2.8)
1 exy .
2evyiwizk < exldf — 5057 + 1k P We,
2 di = 3075,
eiy
2ei i yizk < dk(de +ap + e — E(fik)yi + 0 1 2 Zi'
dk(dk + ay + Uy — 50'4]()
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(d +df +ek)

d e
E
2a (d +€— 2k)

(dE+e)(dl +ap+or+yi)Ax
we finally obtain

(1 £k <n)and b = max;<<,{ }, then from (2.4)—(2.8)

Choosing a; =

n

A
LV < = ) {Aul + B + Cow? + Dy? + FiZ} + § (bay + 1(TEZE 2, (2.9)
k=1 k=1 k

where Ay, By, Ci, Dy and Fy are given in the above.
If (2.1) holds, then A, > 0, B, > 0 and D, > 0. Further, we can choose ¢, d, and e, such that

(dE + &) — O'Zk]

0<cp< [2(d + @y + 6 + yi) — T3],

4 ,f he 2
Cr ; ) CkEk
0<dy < —[2(di +ay+ 6 +y) — o
¢ Mk 0 e o [(df + &) - 0'2k]
1 1
0<e < dil(d; + ax + —zzo'ik)(df - EO'Sk)_
My

Particularly, we can take
[(df + €k) - %o_gk]
8¢}

Cp = [Z(dli +a; + 0 + )/k) - 0'%1(],

4cke,f
[(dk + Ek) - Eo-zk]
dild + i + e = 303)(df = 530%)

dk = ;—k[Z(dli + o + 6k + ’)/k) -
Tk

€ = > >
24
_ 5 Rl rau—tog)
where 1, = Prari 1o 7 > (. Thus, we have
. 5 4cke,f
Cv = al2(d, + ap + 0 +yi) — 03 — 7 1
[(df + &) — 307,]
_ dkéz _ eky,%
0 1.2 R _ 1.2
o 5 ) dere;
> Ck v T + 0 + Y —O'k
[ng + ) — —O'Zk]
5?2 (d +ak+,uk— 0' )
k 4k
dk[dQ+a+ T2 1=0
k kT Mk = 304 'uk
2
and Fy = ex(df — O'5k WM) > (. By integration and taking expectation of both sides
K T THET 30 4

of (2.3), from (2.9) we obtain

EV(@)) - E(V(0)) = E[f LV (r)dr]
kAk

fo Z (A1) + Bvi(r) + Cowi(r) + Dd(r) + Fiz2(n)dr + Z(bak + Ty,

k=1 k=1 k
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Therefore,
lim sup Ig fo Z A (r) + BaA(r) + Cowl(r) + Dd(r) + Fi2(n)dr < Z(bak +1)( ”‘A") :
e k=1 k=1 k
Consequently,
lim sup — g j; Z {AK(S (F) — —) + BLEX(r) + CU2(r)
=0 k=1
+D,QX(r) + FeR2(r)dr < Z(bak el ") .
k=1
This completes the proof. O

Remark 1. From Theorem I, we see that under some conditions the solution of model (1.2) will
oscillates around the disease-free equilibrium of deterministic model (1.1), and the intensity of
fluctuation is only relation to the intensity of the white noise By (t), but do not relation to the
intensities of the other white noises. In a biological interpretation, as the intensity of stochastic
perturbations is small, the solution of model (1.2) will be close to the disease-free equilibrium of
model (1.1) most of the time.

As a special case of model (1.2), when o, = 0, then model (1.2) becomes into

dSe = [Ac— ) BuSkOI(1) - d S dr,
dEy = [Z BiiS (D1;(1) = (dif + €)E;1dt + oy Exd By, (2.10)
=1
dlk = |gE; — (dli +ap+ 0 + ’yk)lk]dt + 0'3klkdB3k,
dOy = [0k — (@2 + e + ) Qi 1dt + o4, QxdBuy,
dR; = [yili + Ok — diR(]dt + o5, R dBsy.

Obviously, Ey is also the disease-free equilibrium of model (2.10). From the proof of Theorem 2,
we get

LV < - Z {200} (S1(r) - —) + BUEL(r) + CLI(r) + Dy Q3(r) + FiRy(r),
k=1

which is negative definite if foreach 1 <k <n

1 1
d1€+ak+6k+7k> —O'%k, de+a/k+,uk>§0'ik. (2.11)

2 E

50’%1{, dllj > E

Therefore, as a consequence of Theorem 1 we have the following result.

Corollary 1. Assume that Ry < 1 and condition (2.11) holds. Then disease-free equilibrium E, of
model (2.9) is globally stochastically asymptotically stable.
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3. Asymptotic behavior around endemic equilibrium of model (1.1)

Firstly, we introduce some concepts and conclusions of graph theory (see [10]). A directed graph
g =(V,E)containsasetV ={1,2,--- ,n} of vertices and a set E of arcs (k, j) leading from initial vertex
k to terminal vertex j. A subgraph H of g is said to be spanning if H and g have the same vertex set.
A directed digraph g is weighted if each arc (k, j) is assigned a positive weight a;;. Given a weighted
digraph g with n vertices, define the weight matrix A = (ax;).x» Whose entry a;; equals the weight of
arc (k, j) if it exists, and O otherwise. A weighted digraph is denoted by (g, A). A digraph g is strongly
connected if for any pair of distinct vertices, there exists a directed path from one to the other and it
is well known that a weighted digraph (g, A) is stronly connected if and only if the weight matrix A is
irreducible (see [32]).

The Laplacian matrix of graph (g, A) is defined by

Zk;ﬁl aik —dap te —Aip
—an Do Qog t —aoy
Ly =
—dn —ay) e Zkin Ank

Let ¢, (1 < k < n) denote the cofactor of the k-th diagonal element of L,. The following lemmas are
the classical results of graph theory (see [21,33]) which will be used in this paper.

Lemma 2. Assume that A is a irreducible matrix and n > 2. Then ¢, > 0 forall 1 < k < n.

Lemma 3. Assume that A is a irreducible matrix and n > 2. Then the following equality holds

z": z": craxjGi(xi) = Zn: Zn: crag;Gj(x)),

k=1 j=1 k=1 j=1
where Gi(x;) (1 < k < n) are arbitrary functions.

For model (1.2), we see that there is not any endemic equilibrium. Therefore, in order to study the
persistence of disease in model (1.2), we need to study the asymptotic behavior of the endemic
equilibrium of model (1.2) which is surrounding the deterministic model (1.1), we obtain the
following result.

Theorem 2. Assume that Ry > 1 and the following conditions hold

1

2 S 2
oy <d;, oy < 3

1 1 1
df, o3, < 5(d,{+ozk+5k+yk),aﬁk < z(dgmkwk), o2, < Ed,’f, 1<k<n (3.1)
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Then for any positive solution (S (1), Ei(t), I;(1), OQx(?), Ri(t), 1 < k < n) of model (1.2) one has

‘ 1 ¢t n dS _ 0.2 . n .
lim — {Z{ckr% = 2aiDi}(Si(s) = S +2 Y (df = 203)(Ex(s) - E})?
-l Jo o k k=1

+ Zn:{ak(dl + oy + O+ Y — 203, - bkd—i - dky_]%}(lk(s) - Ly
k=1 ‘ * d? + o+ dy ¢

+ 3 {bid? + o+ = 20%) - uEH(Qu(s) - Q)

k=1
n

+ > dil(df = 20%) = d(R(s) — RMds < ) pus
k=1 =1

where E* = (S, E., I}, Op, Ry, 1 < k < n) be the endemic equilibrium of model (1.1), and

df +d] + a; + 6 + v

pr= 2 adot (S + a3 (ED? + (1 + )oY
k=1 €

- * - * 1 - *
+2 ; o2 (01 +2 ; deo 2 (R + 3 ; (K +2)03,S:

2 pox df * & 2
+(K + D)oy B + (K + l)e—ko-3klk],

and positive constants r, ay, by, ¢ and Dy (1 < k < n) will be confirmed in the proof of the theorem.

Proof. When R, > 1, from [23] there exits an endemic equilibrium E* of model (1.1), then

Av= ) BySii +diSt, D BuSil; = (df + )E;,
J=1 j=1
GkEZ = (dli + o + 6k + )/k)l;:, 6](1;; = (de + ay +,le)Q;:,
Vil + mQy = diR;, 1 <k <n.

Let matrix A = (akj)nxn With ay; = ,BkjSzI;f, k,j=1,2,---,n.Since B = (Bxj)nxn 18 irreducible, then A

also is irreducible.
Firstly, define the C2-function V, : R — R, by

Vl(SkaEkalkal < k < l’l)

* * S * * E dE + ek £3 £3 I
= ) al(Si—S; - Silog o) + (Ex - By — Eylog ) + ~“——(I - I; - I log 7)1,
pa Sk Ek €L Ik

where ¢, (1 < k < n) are the cofactor of the k-th diagonal element of L,. V| is positive definite. From
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Ito’s formula, by calculating we can get

n n . . (S*)ZdS n ﬁkj(S;:)zﬁ
LV, = ;ckBZﬁkjsklj+2d,fsk—dfsk— gk ko IS—kJ
J=
WLjEy JeEx
+Zﬂk15 I Zﬁk} ]m—z kJS I]E*
dE+Ek ”

_Z,Bk, J]*] + = 7 ch(alkSk + 05, E; + o LRSS 9)
= chds P2 = ———)+ch 3Zﬁk15 I - Z’B"JS ]*
Zﬁk,S;'; Jiké ,’l Zﬁk]S IfEk Ik] +ch[2ﬁkjs I

dE + k

(3.2)

By Lemma 2, we obtain

ck[Zﬁk,S ;- Zﬁk,s Iy I’;

k=1
n n I
= chﬂk]S I 11 - Zchﬁk, : 1* (3.3)
k=1 j=1 k 1 j 1
n n I
= Clek/ k J[* - chkﬁkj ][* =0.
k=1 j=1 k=1 j=1
Similarly, we also get
n n IkEk j ]
Sl —— = cilBiiS il -
pr TEf I, ZZ JE
Hence
¢ 32/3 Sl ~ Z,B Z,B Sil; k—zn:ﬁ SI*IkEk]
- k kj kj kj Js*E I* - JE I,
- ® Sk SkI]EZ I;Ej
= ckZﬂk,SkljB 5 TSEL B
k=1 j:1 k J J J (3 4)
< Z B nL
< ¢k ) PiiS kI [3-3 lnE—ln—]
p k
= Vg Zﬁk, i In E —chZﬁk,S I'In E* =0,
k=1 k=1 j=1

where the last equality is derived from Lemma 3. Substituting (3.3) and (3.4) into (3.2), we have
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d +é€;
€k

Secondly, define the C 2—functlon V, Ri” — R, as follows.

o200, (3.5)

n

E, df+¢
Va(Ego I 1 < k<) = ) el(Bx - B — Eylog &) + ~——
k=1 Ex &

* * I
(I —I; - I log I—’:)J,
k

where ¢, (1 < k < n) are given as in V. V, is positive definite. It follows from Ito’s formula that

d i (df + )(d + ay + o + Vi)
LV, = ch[Zﬁkj Wl — d , - I
X

df + e)E\I;
—Z,Bk/ k] +(dE+6k)E* M

Iy
(dE+a’k+5k+Ek)(d +a/k+5k+)/k) 1 2 . dE+Ek .
€k k=1 €k
noon (3.6)
= > > eBySe—SpU;— 1) + Z chﬁk,s I + =

k=1 j=1 k=1 ] 1

SyE; EkI

S Ekl E Ik ; ;Ckﬁk] ]I*

d + €

- E; a3 1))

kz; JZ; ciBijS i1 I* +3 Z c(03 Ef + ——a3,1)]

We have
SKE:L,  El:
Zchﬁk,S Iyl —"—# e

k=1 ] 1
SvE(I; E;
< ck,b’kjSI[ —l—logﬁ—log — |
;; SE E I
Sk 1; I
= ciBijS I[ *—1—log—*—10g—*—log—] (3.7)
ZZ i 5 loeg ~logg
S I
<chkﬁws 1[ +S—k Zchﬁk]S Iflog 7 - +log 7]
=1 k k=1 j=1
ZchﬁkSI[ + 5k )
- J * ’
k=1 j=1 St Sk

where the last equality is derived from Lemma 3 such that

Z Z ciBiiS i1y log Z Z ciBiiS oIy log I =0.

k=1 j=1 I = J=1
We further get

chkﬁkjs Ijlj Zchﬁk]S Ijl* = 0. (3.8)

k=1 j=1 i k=1 j=1
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Substituting (3.7) and (3.8) into (3.6), we have

LV, < Z Z B(Sk =S~ I)) + Z Z S} 1* —:— 2]

kl]l k=1 j=1

d + Ek .

Thirdly, define the C?-function V3 : R — R, by

(S —8))?
Va(lSi, 1 <k<n)= _—
3(Sk n) ch 25"

k=1

where ¢, (1 < k < n) are given as in V. We obtain

(S =8 &L Se—SH%,
LV3: —ch k( k k) _ ( k k) J

; CifBr; ;
kl S k= j=1 Sk
+3 Z aSiod, — Z Z Bk = SPU; ~ )

k=1 j=1

*

- Z Z aBif(Sk =S - I) + Y aSiol.
k=1

k=1 j=1

Z (d =01 )(Sk =S,
N

Choose K = Z;le B j%, then (3.5) together with (3.9) and (3.10) implies

IA

IA

L(KV1 +V,+ V3)

*

S dE + Ek

+chkﬁk1(5k Sod; - I)+chk,8k]S ][ ko _* - 2]

k=1 j 1 k=1 j=1
d +6 . (dS—cr )(Sk_ )2
nk 1 k
- Z Z B Sk —SpU; = 1) + Z rSio
k=1 j=1 k=1

_chus alkxsk SO

k>

where Ay = 3 LY al(K+2)0%S: + (K + D)o E; + (K + l)d b o3 7.
Next, define the C2-function V4 : R — R, by

Electronic Research Archive

Va(Sio Bl | Sk <m) = > au(Si—S; + Ex = Ep + I = [})?,
k=1

(3.9

(3.10)

(3.11)
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where a; (1 < k < n) are positive constants to be determined later. By calculating, we can get

LV, = -2 Z ar[di (Sk = S} + di(Ex — EQ)* + (d + ay + 6 + vk — I;)*]
k=1

=2 > {aw(d] +df)S k= S(Ex — Ep) + (df +dj + oy + 6 + 1)
X(Sk = SOUx — ) + (df +di + ay + 0 + yi)(Ex — EN) I — I)

2 @2 2 2
+ Z ar(o Sy + o Ex + 03 0y).
k=1

Since 2(dS + dE)(Sx — SI(E; — E}) < U

Sk =S +dE(Ey— E)? and

2d} +d] + oy + 6 +y)Sk = SOk — I})
(dlf + d]i +a, + 6, + ’)/k)2

d + g + 6 + Y1) (Sk = S0? + (dy + ax + 6 + vl = [,
k

we further obtain
LVi< 2 a[Di(Si =S} = (df - 203)(E; - Ep)?

k=1
~(d} + g + 6 + v — 205 — )]

* + 3.12
23 a(df + df + e+ 8+ YE~ ED~ I}) (3.12)
k;l
+2 )" a3 (S + TRED + oA L)),
k=1
s g (@)? (5 +dl+ap+Si+ye)? 5
where Dy = d; +d; + ;f —kd,{,"'kafk"'(sk‘*')’k -
Further, define the C?-function Vs : R — R, by
" df +d +ap + 6 +
Vs, 1 <k <n) = Zak( CHAFOFOET ~ I
k=1 €
We obtain . ]
« df +d! + o + 6 +
LVs = —2Zak[( BTk R TR Yk)(d/i"‘ak'*'dk"")/k
k=1 €
~03 ) I = I = (df +di + ag + 6, + Vi) (Ex — ED(I — I})] (3.13)
= (dE+dI+ozk+5k+yk) y
+2 Z Ay %k(l )

€k

Finally, define the C? functions Vg and V5 : R} — R, as follows.
Ve(Qu 1 <k <m) = bi(Qu— QD% VoRi, 1 <k <n)= ) dRe— R},
k=1 k=1
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where by, d; (1 < k < n) are positive constants to be determined later. We get

LVg= =2 Z bk(de +ay + i — Uik)(Qk - QZ)2
k=1

+2 Z biSH(Qi = QU = 1) +2 Z by Q)

(3.14)
< - Z bid + o + i = 20,0 — Q)
+ b (I—I*)+2 b2 (0F)?
deQ+ak+,u ¢ Zk4k ‘
and
LV, = -2 Z di(df = o2 )R — R +2 ) diyi(Ri = R — I})
k= 1
+2 Z dipi(Qx = QD(Ry = Ry) + 2 Z i3 (R}
(3.15)
< - Z d(df = 202)(R, — R} + Z dy R(Ik - )’
k
* Z Q- Q) + Z (R — R +2 Z (R,
k=1 k=1 k=1
where the last equality is derived by the inequality 2ab < a® + b>.
From (3.12)—(3.15) we obtain
L(V4 + V5 + V6 + V7)
< 2 Z axDy(S — S} -2 Z(dE 203)(Ey — E})?
Za(a’ F O+ Y —202) — b % PRy Iy
- k k k k— ko Yk k—
= T vy dE (3.16)
- Z{bk(d,? g+ = 205 — Qi - O
k=1
= > dd(df —20%) - d)(Re — R + > Ci,
k=1 k=1
where
4 df +dl + ay + 6 + i
Cr= 2 ) oS + (B + (1 + F—— 5 ())
k=1 k

12 bio () +2 ) dio (R,
k=1 k=1
From condition (3.1), we can choose positive numbers r, a;, b, and d; for k = 1,2,--- ,n satisfying
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di < df — 2073, and

257 Dkak [ de+ K+ ] /lk

r> S—, a; > — » b > —5
(d} —o3)cr (d, +ag + 0 + vk — 20'3k) (d7 + g+ py —2073,)

such that foreach 1 <k <n

62
ald] + @ + 5+ 3 - 203) — [bi—g— +dky;]>o, df — 202 — d; > 0,
di + ap + dy

*

Sk
ds_—22aka > 0.

AT

bk(de + ap + Ui —20"2”() —,u,% >0, cr —

Lastly, define a Lyapunov function as follows
V=r(KVi+ Vo, +V3)+ V,+ Vs + Vg + V5.
By Ito’s formula, we obtain

dV = LVdt+ ZZ:I O'lk[Ckr(K + %)(Sk - S;:) + 2ak(Sk - SZ + E; — EZ + I, — ]Z)Sk]dBlk
k

+22 Uzk[Cer(Ek - EZ) + ak(Sk - SZ + E; — EZ + I, — IZ)Ek]dBZk

k=1
! df + ¢ df +d' + ay + 6 +
# 3 oK + Do 4 g H T T Ryg1y 4 2,
k=1 €k €
XSk =S;+ I = I; + Ex — EDI}dBsy + Z T 41bi(Qr — O)) OrdBax
k=1
+ Z o skdi(Ry — Ry)RdBsy,
k=1
where (3.11) together with (3.16) implies
o)
Lvs - Z[ T 2Dy~ S+ 2dE ~ 205)(Ee - E}Y
Hagd] + ag + 0 + yi - 20%) - kaé—’% PRI
d; + a’k + M dk

+{bk(dk +ay + e — 2075) — 1O — 0}
Hdf = 20%) — dd(Re = RO+ ) pr.
k=1

Electronic Research Archive

(3.17)

(3.18)
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By integration and taking expectation of both sides of (3.17), we obtain

!

E(V(®) - EWV(0)) = E[ f LV(r)dr]

(dS o) .
< -E f e~ T _ 2a, DSk — S + 2(dF - 202 )(E — E})?
0
k 1 62
k 7k
Hap(d] + ay + 6 + Y — 203,) — ka— — = I )
d; + CYk + My dk
Hbi(dC + ay + py = 207%) — 13Ok — Q))*
H(df = 20%) - dd(Re = R Mdr +1 ) py.
Therefore,
(dlf lk) E 2 32
lim sup E - 2aka}(Sk - k) + 2(d 20'2k)(Ek - Ek)
t—o00 0 k 1
Hap(d! + ag + 6+, — 2 bé—’%—dy—i}l—l*z
Ha( @ + O + Yk — 203, — de+C¥k+,uk kdlf(k i)
{bk(d +ay + e —207,) — Ok - Qk)
H(df —20%) — di(Re — R ldr < Zpk.
This completes the proof. O

As a consequence of Theorem 2, we have the following result on the existence and uniqueness of
stationary distribution for model (1.2).

Theorem 3. Assume that all conditions in Theorem 2 hold. Then model (1.2) has a unique stationary
distribution u(-) in RY".

Proof. Choose region Q in ( [34], Lemma 2.5) by Q = R3". Consider the following inequality

H, (d - 2 O E 2 )2
D o= = 2aB(S i — S +2 ) (df - 203)(Ex — E})

k= l SZ k=1
+Za(d b+ Oy —202) — b % 2 Yey Iy
% _

k=1 ‘ A dQ+C¥k+,Uk kdllj *

+ Z{bku,? @+ = 205) = 15)(Qk — O
kzl

+ Y dil(df = 20%) — di) (R — R < H.
k=1

Let region U; denote all points (S, Ex, I, O, Rx, 1 < k < n) which satisfy the above inequality with
H = 23%_, px and region U, denote all points (S, Ex, Iy, Ok, Ry, 1 < k < n) which satisty the above
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inequality with H = 3 }}_, px. Obviously, U, is a neighborhood of U; and the closure U, C Q. Then
from (3.18), forany x € Q\ U,

n CiS
LV < —Z[ ( ”‘) — 24D (S — S + 2(dF — 202 )(Ey — E})?

2
k %
de+a/k+,uk

Hbi(d? + @y + py = 20%) — 12)(Qx — 0))?

Hdf = 20%) — did (R = RD + > e <= ) py,

k=1 k=1

2
{ak(d,i +a; + 6k +y—20%)-b - dkj—g}ak —I)?

which implies condition (ii) in ( [35], Lemma 2.5) is satisfied.
For model (1.2), the diffusion matrix is

A(x) = diag(01,S 3, 05, E;, 05,17, 05,01, agkR,E, 1 <k<n).

2 2 2 2 p2 .
Choose a positive constant M > 1nfU2{o'llS o'zlE 0'311 0'41 < O'SiRl. ,1 <i < n}. Then,

10

Sn n n

_ 2 @242 2 g2 2 22
Z ;i = Z 1S €5 + Z Y O Z o3l &5
i=1 =1 =1 =1

n n
2 22 2 22 2
+ZO'4iQi§5i—1 + ZO'SiRifﬁ > M€,
Pt pr)

forall (S;, E;, I;, Q;,R;, 1 <i <n) € U, and & € RY. This implies condition (i) in ( [34], Lemma 2.5)
is also satisfied. Therefore, by ( [34], Lemma 2.5), model (1.2) has a unique stationary distribution u
in R3". This completes the proof. |

4. Numerical simulation

In this section, we analyse the stochastic behaviour of model (1.2) by means of the numerical
simulations in order to make readers understand our results more better. The numerical simulation
method can be found in [36]. The corresponding discretization system of

Skiv1 = Ski+ [Ae = BuSkilii — BaS kil — di Sk il At
+o 1S ki VAtey + O%kTS 1AL = A1),

Evivi = Eri+ [BaSkilii + BraSkil2i — (dk + &) Ey ]At
+ouEy, \/Ktez;(,i + @(sﬁk’im - Ap),

Liivi = I+ [&Er; — (d + ap + 6 + i)l 1At
+oyde; Aty + %(aﬁk,im — Ab),

Oriv1 = Qi+ [0cdki — (de + o + 1) O AL + 0y O Vtey,

P
o i
+%Q"’ e5.0t — AD),
Riivi = Rui+ [vilii + Qi — diRi 1AL + o 5i Ry VAtesy,
O-gkRk»i
=5 (eSklAt A1),
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where time increment At > 0, and €1, x> E3ki» Eaki» Eski for 1 < k < n are N(0, 1)-distributed
independent random variables which be generated numerically by pseudo-random number generators.

Example 1. In model (1.2), we choose n = 2 and the parameters A; = 3.2, ¢ = 0.1, a; = 0.1,
B = 0.409, df = 0.9, df = 0.7, d{ = 0.81, de = 0.2, df = 0.65, u; = 0.3, y; = 0.04, B, = 0.02,
(51—01 0'11—015 0'21—01 0'31—041 0'41—02 0'51203 A2:75 62:24 612:02
B2 = 0.05, dS =0.49, dE 0.25, d’ 0.15, dQ 0.25, dR 0.39, u, = 0.5, v, = 0.15, B2, = 0.0014,
62—043 0'12—02 0'22—06 0'32—05 0'42—083.1’1(10'52—0.8.

By computing, we have Ry = 0.8675 < 1 and disease-free equilibrium E, = (3.56,0,0,0,0, 15.31,
0,0,0,0) for corresponding deterministic model (1.1), and the conditions in Theorem 1 are satisfied.
Therefore, according to the conclusion in Theorem 1 by numerical calculation we can obtain that for
the solution (S.(2), Ex(2), I(t), Ok(t), R (1), k = 1,2) satisfying the initial values
(51(0), E1(0), 1;(0), 01(0), R1(0)) = (0.75,0.8,0.8,0.2,0.2) and
(5,(0), E5(0), 1,(0), Q,(0),R,(0)) = (1.7,4.5,2.7, 4 3,5) one has

lim sup Y f ZAk(Sk(r) SN2 + BLEX(r) + ClIi(r) + Dy Qi(r) + FiRi(D)dt < 1049, (4.1)

=0 0 %=1

where S9 = 3.56, S9 = 15.31, A} = 0.8775, A, = 048, B, = 0.1988, B, = 0.6175, C; = 18.21,
C, = 0.04295, D, = 0.1482, D, = 0.0077, F; = 0.1507 and F, = 3.7551 x 10°.

From the numerical simulations given in Figure 1 we easily see that the above formula (4.1) holds.
That is, the solution of stochastic model (1.2) asymptotically oscillates in probability around disease-
free equilibrium E|.

In addition, from Figure 1 we also easily see that the mean of susceptible S,(¢) (k = 1,2) tend
to S ,‘2 and all exposed Ey, infectious I;, quarantined Q; and recovered R, for k = 1,2 tend to zero in
probability as t — oo.

Example 2. In model (1.2), we choose n = 2 and the parameters A; = 0.8, ¢ = 0.1, @; = 0.1,
B = 0.109, d‘f =0.19, df = 1.107, d’ 0.081, dQ 0.2, dR 0.65, uy = 0.3, y; = 0.04, 81, = 0.02,
51—001 0'11—115 0'21—11 0'21—141 0'41—012 0'51—13 A2:15 62:24 a2:02
B21 = 0.05, dS =0.49, dE 0.25, d’ 0.15, dQ 0.25, dR 0.39, u, = 0.5, ¥, = 0.15, B, = 0.0014,
(52—0043 1 = 12 0'22—16 0'32—05 0'42—08and0'52—0.8.

By computing, we have Ry = 0.5174 < 1. Since d; — o7, = -1.13 < 0, d5 — o}, = =033 < 0,

df — 102, = -02 < 0 and d§ - 102, = —0.46 < 0, the condition (2.1) in Theorem 1 does not hold.
However, from the numerical simulations given in Figure 2, we can see that the solution
S, Ex(), I(1), Or(), R (1), k= 1,2) of stochastic model (1.2) with initial values
(51(0), E1(0), 1,(0), O1(0), R1(0)) = (0.75,0.8,0.8,0.2,0.2) and
(52(00), E»(0), ,(0), 0,(0),R2(0)) = (1.7,4.5,2.7,4.3,5) asymptotically oscillates in probability
around the disease-free equilibrium E, = (4.21,0,0,0,0,3.06,0,0,0,0) of corresponding

deterministic model (1.1). This example seems to indicate that the condition (2.1) in Theorem 1 can
be weakened or taken out.
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Figure 1. The numerical simulations of asymptotic oscillation in probability around disease-
free equilibrium E, for the solution (S(t), Ex(t), I;(t), OQx(t), Ri(t),k = 1,2) of stochastic
model with initial values (S;(0), E(0), 1;(0), 01(0),R(0)) = (0.75,0.8,0.8,0.2,0.2) and
(5,2(0), E5(0), I,(0), 0,(0), R,(0)) = (1.7,4.5,2.7,4.3,5).
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Figure 2. The numerical simulations of asymptotic oscillation in probability around disease-
free equilibrium E, for the solution (S(t), Ex(t), Ii(?), OQx(t), Ri(t),k = 1,2) of stochastic
model (1.2) with initial values (S(0), E1(0), 1,(0), 0,(0), R;(0)) = (0.75,0.8,0.8,0.2,0.2)
and (S,(0), E>(0), 15(0), 0»(0), R,(0)) = (1.7,4.5,2.7,4.3,5).

Example 3. In model (1.2), we choose n = 2 and the parameters A; = 4.5, ¢ = 1, a; = 0.1,
B = 1.55, df = 0.5, df = 0.15, d{ = 0.1, d? = 0.2, df = 0.65, u; = 0.3, y; = 04, B, = 1.35,
51 = 06, g1 = 03, 091 = 05, g3 = 04, 041 = 02, J51 = 04, Az = 75, € = 24, an = 0.2,ﬁ21 = 15,
dg = 0.49, df = 0.25, dé = 0.15, d2Q = 0.25, d§ = 0.39, up = 0.5, v, = 0.15, B, = 1.24, 6, = 043,
o1 = 02, O = 06, O3 = 05, Oy = 0.8 and O5 = 0.3.

By computing, we have Ry = 1.1032 > 1 and the conditions in Theorem 2 are satisfied. The
numerical simulations are given in Figures 3 and 4.  Figure 3 shows that the solution
(S, Ex(1), Ik (1), Ox(), Ri(t),k = 1,2) of stochastic model (1.2) satisfying the initial values
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(51(0), E1(0), 1,(0), 91(0), R (0)) (0.75,0.8,0.8,0.2,0.2) and
(52(0), E»(0), 1,(0), 0,(0),R,(0)) = (1.7,4.5, 27 4.3,5) asymptotically oscillates in probability
around the endemic equilibrium E* = (0.37,3.35,0.27,0.38,0.19,0.79,2.68,6.93,3.14,6.68) of
corresponding deterministic model (1.1). Figure 4 shows that the solution has a unique stationary
distribution. Therefore, the conclusions of Theorem 3 are validated by the numerical example.

In addition, from Figure 3 we also easily see that the mean value of the solution for stochastic
model (1.2) asymptotically oscillates in probability around the endemic equilibrium E* of
corresponding deterministic model (1.1). From Figure 5 we can find the relationship between
variances of the solution (S.(t), Ex(?), I;(?), Qi(t), R (t),k = 1,2) and the intensities of noises
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Figure 3. The numerical simulations of asymptotic oscillation in probability around
endemic equilibrium E* for the solution (S (?), Ex(¢), I;(t), Ok(t), R (t), k = 1,2) of stochastic
model (1.2) with initial values (S(0), E£1(0), 1,(0), 0,(0), R;(0)) = (0.75,0.8,0.8,0.2,0.2)
and (5,(0), E»(0), ,(0), 0,(0), R,(0)) = (1.7,4.5,2.7,4.3,5).

Electronic Research Archive Volume 31, Issue 7, 4155-4184.



4178

= ——  Histeqram fiffing conve with 10,000 points

Censiybaretc1

Hlling curve with 10,000 pornls

Jenedy i
K

——  Hislogram hilng curve with 10,000 pornts

o 5 10 15 o 5 10 15 20

. B3

Figure 4. The stationary distribution of the solution (S (7), Ei(?), Ix(?), Ox(1), Ri(t), k = 1,2)
for the stochastic model (1.2).
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Figure 5. The numerical simulations of variances for the solution (S x(¢), Ex(?), Ii(t), Q«(?),
Ry (1), k = 1,2) of stochastic model (1.2) with initial values (S {(0), E1(0), I,(0), Q1(0), R;(0))
= (0.75,0.8,0.8,0.2,0.2) and (S ,(0), E»(0), ,(0), 0»(0), R,(0)) = (1.7,4.5,2.7,4.3,5).

Example 4. In model (1.2), we choose n = 2 and the parameters A; = 4.5, ¢ = 0.1, a; = 0.1,
B = 1.55, df = 2.05, df = 1.015, d{ = 0.51, de = 0.02, df = 0.65, u; = 0.3, v, = 0.04, By, = 1.35,
(5] = 06, g1 = 23, O = 15, g3 = 05, 41 = 04, Os51 = 04, A2 = 75, € = 24, ayr = 0.2,ﬁ21 = 15,
dg = 0.49, dzE = 0.25, dé = 0.15, sz = 0.25, a’§ =0.39, u, = 0.5, y, = 0.15, B2y = 0.24, 6, = 0.43,
O = 12, Oy = 06, O3 = 05, T4 = 0.8 and O35 = 0.3.

By computing, we have Ry = 1.09013 > 1. Since d} — 02, = -10.12 < 0,d5 — 0}, = -043 <0
and df - %0%1 = —0.11 < 0, the condition (3.1) in Theorem 2 does not hold. However, from the
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numerical simulations are
(S 1(0), Ex(), 1(1), Oi(1), Ri(2), k
(51(0), E1(0), 1,(0), Q1(0), R1(0))
(52(0), E2(0), 1(0), 02(0), R2(0))
around the endemic equilibrium E*

given

in

Figures
1,2) of

6 we can see that the solution
stochastic model (1.2) with initial values
(0.75,0.8,0.8,0.2,0.2) and

(1.7,4.5,2.7,4.3,5) asymptotically oscillates in probability

= (0.43,3.24,0.26,0.37,0.19,3.34,2.22,5.7,2.59,5.51) of
corresponding deterministic model (1.1). This example seems to indicate that the condition (3.1) in
Theorem 2 can be weakened or taken out.
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Figure 6. The numerical simulations of asymptotic oscillation in probability around
endemic equilibrium E* for the solution (S (?), Ex(¢), I;(t), Ok(t), R (t), k = 1,2) of stochastic

model (1.2) with initial values (S(0), £,(0), 1,(0), Q;(0), R;(0))

and (5,(0), E»(0), 1(0), 02(0), R,(0)) = (1.7,4.5,2.7,4.3,5).
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5. Conclusions

In this research we consider a class of stochastic multi-group SEIQR (susceptible, exposed,
infectious, quarantined and recovered) models in computer network. For the deterministic system, if
the reproduction number R, > 1, the system has unique endemic equilibrium which is globally stable,
this means that the disease will persist at the endemic equilibrium level if it is initially present. It is
clear that when the disease is endemic, the recovery nodes increases with the increasing quarantine
nodes, and finally both reach the steady state values. Thus, it will be of great importance for one to
run anti-malicious software to quarantine infected nodes. In order to study the asymptotic behavior of
model (1.2), we first introduce the global existence of a positive solution. Then by using the theory of
graphs, stochastic Lyapunov functions method, Ito’s formula and the theory of stochastic analysis, we
carry out a detailed analysis on the asymptotic behavior of model (1.2). If Ry < 1, the solution of
model (1.2) oscillates around the disease-free equilibrium, while if Ry > 1, the solution of model (1.2)
fluctuates around the endemic equilibrium. The investigation of this stochastic model revealed that the
stochastic stability of E* depends on the magnitude of the intensity of noise as well as the parameters
involved within the model system. finally, numerical methods are employed to illustrate the dynamic
behavior of the model. The effect of quarantine on recovered nodes is also analyzed in the
stochastic model.

Some interesting topics deserve further consideration. On the one hand, we can solve the
corresponding probability density function of various stochastic epidemic models. On the other hand,
we need to establish a more complete and systematic theory to obtain more accurate conditions and
density function. The reader is referred to [37—45]. These problems are expected to be studied and
solved as planned future work.
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