Research article

Dynamics of a three-molecule autocatalytic Schnakenberg model with cross-diffusion: Turing patterns of spatially homogeneous Hopf bifurcating periodic solutions

  • Received: 04 April 2023 Revised: 10 May 2023 Accepted: 22 May 2023 Published: 29 May 2023
  • In this paper, a three-molecule autocatalytic Schnakenberg model with cross-diffusion is established, the instability of bifurcating periodic solutions caused by diffusion is studied, that is, diffusion can destabilize the stable periodic solutions of the ordinary differential equation (ODE) system. First, utilizing the local Hopf bifurcation theory, the central manifold theory, the normal form method and the regular perturbation theory of the infinite dimensional dynamical system, the stability of periodic solutions for the ODE system is discussed. Second, for this model, according to the implicit function existence theorem and Floquet theory, the Turing instability of spatially homogeneous Hopf bifurcating periodic solutions is studied. It is proved that the otherwise stable Hopf bifurcating periodic solutions in the ODE system produces Turing instability in the Schnakenberg model with cross-diffusion. Finally, through numerical simulations, it is verified that Turing instability of periodic solutions is determined by cross-diffusion rates.

    Citation: Weiyu Li, Hongyan Wang. Dynamics of a three-molecule autocatalytic Schnakenberg model with cross-diffusion: Turing patterns of spatially homogeneous Hopf bifurcating periodic solutions[J]. Electronic Research Archive, 2023, 31(7): 4139-4154. doi: 10.3934/era.2023211

    Related Papers:

  • In this paper, a three-molecule autocatalytic Schnakenberg model with cross-diffusion is established, the instability of bifurcating periodic solutions caused by diffusion is studied, that is, diffusion can destabilize the stable periodic solutions of the ordinary differential equation (ODE) system. First, utilizing the local Hopf bifurcation theory, the central manifold theory, the normal form method and the regular perturbation theory of the infinite dimensional dynamical system, the stability of periodic solutions for the ODE system is discussed. Second, for this model, according to the implicit function existence theorem and Floquet theory, the Turing instability of spatially homogeneous Hopf bifurcating periodic solutions is studied. It is proved that the otherwise stable Hopf bifurcating periodic solutions in the ODE system produces Turing instability in the Schnakenberg model with cross-diffusion. Finally, through numerical simulations, it is verified that Turing instability of periodic solutions is determined by cross-diffusion rates.



    加载中


    [1] A. D. Anna, P. G. Lignola, S. K. Scott, The application of singularity theory to isothermal autocatalytic open systems, Proc. R. Soc. A: Math., 403 (1986), 341–363. https://doi.org/10.1098/rspa.1986.0015 doi: 10.1098/rspa.1986.0015
    [2] J. M. Mahaffy, Cellular control models with linked positive and negative feedback and delays. Ⅰ. the models, J. Theor. Biol., 106 (1984), 89–102. https://doi.org/10.1016/0022-5193(84)90011-0 doi: 10.1016/0022-5193(84)90011-0
    [3] B. Peng, S. K. Scott, K. Showalter, Period doubling and chaos in a three-variable autocatalator, J. Phys. Chem., 94 (1990), 5243–5246. https://doi.org/10.1021/j100376a014 doi: 10.1021/j100376a014
    [4] D. T. Lynch, Chaotic behavior of reaction systems: Mixed cubic and quadratic autocatalysis, Chem. Eng. Sci., 47 (1992), 4435–4444. https://doi.org/10.1016/0009-2509(92)85121-Q doi: 10.1016/0009-2509(92)85121-Q
    [5] K. Alhumaizi, R. Aris, Chaos in a simple two-phase reactor, Chaos Solitons Fractals, 4 (1994), 1985–2014. https://doi.org/10.1016/0960-0779(94)90117-1 doi: 10.1016/0960-0779(94)90117-1
    [6] H. Liu, B. Ge, Turing instability of periodic solutions for the Gierer-Meinhardt model with cross-diffusion, Chaos Solitons Fractals, 155 (2022), 111752. https://doi.org/10.1016/j.chaos.2021.111752 doi: 10.1016/j.chaos.2021.111752
    [7] H. Liu, B. Ge, J. Shen, Dynamics of periodic solutions in the reaction-diffusion glycolysis model: Mathematical mechanisms of Turing pattern formation, Appl. Math. Comput., 431 (2022), 127324. https://doi.org/10.1016/j.amc.2022.127324 doi: 10.1016/j.amc.2022.127324
    [8] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theor. Biol., 81 (1979), 389–400. https://doi.org/10.1016/0022-5193(79)90042-0 doi: 10.1016/0022-5193(79)90042-0
    [9] D. Iron, J. Wei, M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model, J. Math. Biol., 49 (2004), 359–390. 10.1007/s00285-003-0258-y doi: 10.1007/s00285-003-0258-y
    [10] A. May, P. A. Firby, A. P. Bassom, Diffusion driven instability in an inhomogeneous circular domain, Mathematical and Computer Modelling, 29 (1999), 53–66. https://doi.org/10.1016/S0895-7177(99)00039-4 doi: 10.1016/S0895-7177(99)00039-4
    [11] A. Madzvamuse, Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Comput. Phys., 214 (2006), 239–263. https://doi.org/10.1016/j.jcp.2005.09.012 doi: 10.1016/j.jcp.2005.09.012
    [12] M. J. Ward, J. Wei, The existence and stability of asymmetric spike patterns for the Schnakenberg Model, Stud. Appl. Math., 109 (2002), 229–264. https://doi.org/10.1111/1467-9590.00223 doi: 10.1111/1467-9590.00223
    [13] P. Liu, J. Shi, Y. Wang, X. Feng, Bifurcation analysis of reaction-diffusion Schnakenberg model, J. Math. Chem., 51 (2013), 2001–2019. https://doi.org/10.1007/s10910-013-0196-x doi: 10.1007/s10910-013-0196-x
    [14] C. Xu, J. Wei, Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction-diffusion model, Nonlinear Anal. Real World Appl., 13 (2012), 1961–1977. https://doi.org/10.1016/j.nonrwa.2012.01.001 doi: 10.1016/j.nonrwa.2012.01.001
    [15] F. Yi, E. A. Gaffney, S. Seirin-Lee, The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system, Discrete Contin. Dyn. Syst., 22 (2017), 647–668. https://doi.org/10.3934/dcdsb.2017031 doi: 10.3934/dcdsb.2017031
    [16] H. Wei, Z. Bao, Hopf bifurcation analysis of a reaction-diffusion Sel'kov system, J. Math. Anal. Appl., 356 (2009), 633–641. https://doi.org/10.1016/j.jmaa.2009.03.058 doi: 10.1016/j.jmaa.2009.03.058
    [17] K. Maginu, Stability of spatially homogeneous periodic solutions of reaction-diffusion equations, J. Differ. Equations, 31 (1979), 130–138. https://doi.org/10.1016/0022-0396(79)90156-6 doi: 10.1016/0022-0396(79)90156-6
    [18] F. Yi, Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling, J. Differ. Equations, 281 (2021), 379–410. https://doi.org/10.1016/j.jde.2021.02.006 doi: 10.1016/j.jde.2021.02.006
    [19] D. B. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin, 1981.
    [20] F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
    [21] B. D. Hassard, N. D. Kazarinoff, Y. H. Wan, Theory and applications of Hopf bifurcation, Cambridge University Press, 1981.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(949) PDF downloads(38) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog