Research article Special Issues

Global bifurcation and structure of stationary patterns of a diffusive system of plant-herbivore interactions with toxin-determined functional responses


  • Received: 08 September 2022 Revised: 09 February 2023 Accepted: 12 February 2023 Published: 17 February 2023
  • In this paper, a homogeneous diffusive system of plant-herbivore interactions with toxin-determined functional responses is considered. We are mainly interested in studying the existence of global steady state bifurcations of the diffusive system. In particular, we also consider the case when the bifurcation parameter, one of the diffusion rates, tends to infinity. The corresponding system is called shadow system. By using time-mapping methods, we can show the existence of the positive non-constant steady state solutions. The results tend to describe the mechanism of the spatial pattern formations for this particular system of plant-herbivore interactions.

    Citation: Cunbin An. Global bifurcation and structure of stationary patterns of a diffusive system of plant-herbivore interactions with toxin-determined functional responses[J]. Electronic Research Archive, 2023, 31(4): 2095-2107. doi: 10.3934/era.2023107

    Related Papers:

  • In this paper, a homogeneous diffusive system of plant-herbivore interactions with toxin-determined functional responses is considered. We are mainly interested in studying the existence of global steady state bifurcations of the diffusive system. In particular, we also consider the case when the bifurcation parameter, one of the diffusion rates, tends to infinity. The corresponding system is called shadow system. By using time-mapping methods, we can show the existence of the positive non-constant steady state solutions. The results tend to describe the mechanism of the spatial pattern formations for this particular system of plant-herbivore interactions.



    加载中


    [1] Z. Feng, R. Liu, D. DeAngelis, Plant-herbivore interactions mediated by plant toxicity, Theor. Popul. Biol., 73 (2008), 449–459. https://doi.org/10.1016/j.tpb.2007.12.004 doi: 10.1016/j.tpb.2007.12.004
    [2] R. Liu, Z. Feng, H. Zhu, D. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, J. Differ. Equations, 245 (2008), 442–467. https://doi.org/10.1016/j.jde.2007.10.034 doi: 10.1016/j.jde.2007.10.034
    [3] C. Castillo-Chavez, Z. Feng, W. Huang, Global dynamics of a plant-herbivore model by toxin-determined functional response, SIAM J. Math. Anal., 72 (2012), 1002–1020. https://doi.org/10.1137/110851614 doi: 10.1137/110851614
    [4] Y. Zhao, Z. Feng, Y. Zheng, X. Cen, Existence of limit cycles and homoclinic bifurcation in a plant-herbivore model with toxin-determined functional response, J. Differ. Equations, 248 (2015), 2487–2842. https://doi.org/10.1016/j.jde.2014.12.029 doi: 10.1016/j.jde.2014.12.029
    [5] Y. Li, Z. Feng, R. Swihart, J. Bryant, N. Huntly, Modeling the impact of plant toxicity on plant-herbiovre dynamics, J. Dyn. Differ. Equations, 18 (2006), 1021–1042. https://doi.org/10.1007/s10884-006-9029-y doi: 10.1007/s10884-006-9029-y
    [6] Z. Feng, W. Huang, D. DeAngelis, Spatially heterogeneous invasion of toxin plant mediated by herbivory, Math. Biosci. Eng., 10 (2013), 1519–1538. https://doi.org/10.3934/mbe.2013.10.1519 doi: 10.3934/mbe.2013.10.1519
    [7] N. Xiang, Q. Wu, A. Wan, Spatiotemporal patterns of a diffusive plant-herbivore model with toxin-determined functional responses: Multiple bifurcations, Math. Comput. Simul., 187 (2021), 337–356. https://doi.org/10.1016/j.matcom.2021.03.011 doi: 10.1016/j.matcom.2021.03.011
    [8] M. Crandall, P. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1016/0022-1236(71)90015-2 doi: 10.1016/0022-1236(71)90015-2
    [9] P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487–513. https://doi.org/10.1016/0022-1236(71)90030-9 doi: 10.1016/0022-1236(71)90030-9
    [10] J. Jang, W. Ni, M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dyn. Differ. Equations, 16(2) (2004), 297–320. https://doi.org/10.1007/s10884-004-2782-x doi: 10.1007/s10884-004-2782-x
    [11] K. Cheng, Uniqueness of a limit cycle for a predator-prey system, SIAM J. Math. Anal., 12 (1981), 541–548. https://doi.org/10.1137/0512047 doi: 10.1137/0512047
    [12] F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
    [13] Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal., 13 (1982), 555–593. https://doi.org/10.1137/0513037 doi: 10.1137/0513037
    [14] W. Li, J. Ji, L. Huang, Dynamics of a controlled discontinuous computer worm system, Proc. Am. Math. Soc., 10 (2020), 4389–4403. https://doi.org/10.1090/proc/15095 doi: 10.1090/proc/15095
    [15] W. Li, J. Ji, L. Huang, Z. Guo, Global dynamics of a controlled discontinuous diffusive SIR epidemic system, Appl. Math. Lett., 121 (2021), 107421. https://doi.org/10.1016/j.aml.2021.107420 doi: 10.1016/j.aml.2021.107420
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1070) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog