In this paper, we study the spectral properties of the Sturm-Liouville operator with eigenparameter-dependent boundary conditions and transmission conditions. In details, we introduce a Hilbert space formula, so that the problem we consider can be interpreted as an eigenvalue problem of an self-adjoint operator. Moreover, the Green's function and the resolvent of the related linear operator are obtained.
Citation: Gaofeng Du, Chenghua Gao, Jingjing Wang. Spectral analysis of discontinuous Sturm-Liouville operators with Herglotzs transmission[J]. Electronic Research Archive, 2023, 31(4): 2108-2119. doi: 10.3934/era.2023108
In this paper, we study the spectral properties of the Sturm-Liouville operator with eigenparameter-dependent boundary conditions and transmission conditions. In details, we introduce a Hilbert space formula, so that the problem we consider can be interpreted as an eigenvalue problem of an self-adjoint operator. Moreover, the Green's function and the resolvent of the related linear operator are obtained.
[1] | S. Currie, A. D. Love, Hierarchies of difference boundary value problems continued, J. Differ. Equations Appl., 19, (2013), 1807–1827. https://doi.org/10.1080/10236198.2013.778841 |
[2] | P. A. Binding, P. J. Browne, K. Seddighi, Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Edinburgh Math. Soc., 37 (1994), 57–72. https://doi.org/10.1017/S0013091500018691 doi: 10.1017/S0013091500018691 |
[3] | C. Gao, R. Ma, Eigenvalues of discrete Sturm-Liouville problems with eigenparameter dependent boundary conditions, Linear Algebra Appl., 503 (2016), 100–119. https://doi.org/10.1016/j.laa.2016.03.043 doi: 10.1016/j.laa.2016.03.043 |
[4] | C. Gao, R. Ma, F. Zhang, Spectrum of discrete left definite Sturm-Liouville problems with eigenparameter-dependent boundary conditions, Linear Multilinear Algebra, 65 (2017), 1904–1923. https://doi.org/10.1080/03081087.2016.1265061 doi: 10.1080/03081087.2016.1265061 |
[5] | C. Bartels, S. Currie, M. Nowaczyk, B. A. Watson, Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: Hilbert space formulation, Integr. Equations Oper. Theory, 90 (2018), 1–20. https://doi.org/10.1007/s00020-018-2463-5 doi: 10.1007/s00020-018-2463-5 |
[6] | A. A. Shkalikov, Boundary value problems for ordinary differential equations with a parameter in boundary conditions, Funct. Anal. Appl., 16 (1982), 324–326. http://dx.doi.org/10.1007/bf01077869 doi: 10.1007/bf01077869 |
[7] | A. Zettl, Sturm-Liouville Theory, Mathematical Surveys and Monographs, American Mathematical Society, 21 (2005). |
[8] | M. S. Agranovich, B. Z. Katsenelenbaum, A. N. Sivov, N. N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH Verlag Berlin GmbH, Berlin, 1999. |
[9] | A. V. Luikov, Yu. A. Mikhailov, Theory of Heat and Mass Transfer, Gosenergoizdat, 1963. |
[10] | A. N. Tikhonov, A. A. Samarskii, Equations of Mathematical Physics, Pergamon, Oxford, 1963. |
[11] | J. Ao, J. Sun, Eigenvalues of a class of fourth-order boundary value problems with transmission conditions using matrix theory, Linear Multilinear Algebra, 69 (2021), 1610–1624. https://doi.org/10.1080/03081087.2019.1634671 doi: 10.1080/03081087.2019.1634671 |
[12] | J. Ao, L. Zhang, An inverse spectral problem of Sturm-Liouville problems with transmission conditions, Mediterr. J. Math., 17 (2020), 24. https://doi.org/10.1007/s00009-020-01598-0 doi: 10.1007/s00009-020-01598-0 |
[13] | J. Ao, J. Wang, Eigenvalues of Sturm-Liouville problems with distribution potentials on time scales, Quaestiones Math., 42 (2019), 1185–1197. https://doi.org/10.2989/16073606.2018.1509394 doi: 10.2989/16073606.2018.1509394 |
[14] | Z. Akdogan, M. Demirci, O. Sh. Mukhtarov, Discontinuous Sturm-Liouville problems with eigendependent boundary and transmissions conditions, Acta Math. Sci. Ser. B (Engl. Ed.), 25 (2005), 731–740. https://doi.org/10.1007/s10440-004-7466-3 doi: 10.1007/s10440-004-7466-3 |
[15] | I. Dehghani, A. J. Akbarfam, Resolvent operator and self-adjointness of Sturm-Liouville operators with a finite number of transmission conditions, Mediterr. J. Math., 11 (2014), 447–462. https://doi.org/10.1007/s00009-013-0338-1 doi: 10.1007/s00009-013-0338-1 |
[16] | E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations I, Oxford University Press, London, 1962. |