In this paper, we considered the existence of solutions to a discrete second-order resonance problem with eigenparameter-dependent boundary conditions. We first transformed the resonance problem into its corresponding equivalent system using the Lyapunov-Schmidt method. In addition, using Schauder's fixed-point theorem and the connectivity theories of the solution set of compact vector fields, we obtained the existence and multiplicity of solutions to the second-order discrete resonance problem with eigenparameter-dependent boundary conditions.
Citation: Chenghua Gao, Enming Yang, Huijuan Li. Solutions to a discrete resonance problem with eigenparameter-dependent boundary conditions[J]. Electronic Research Archive, 2024, 32(3): 1692-1707. doi: 10.3934/era.2024077
In this paper, we considered the existence of solutions to a discrete second-order resonance problem with eigenparameter-dependent boundary conditions. We first transformed the resonance problem into its corresponding equivalent system using the Lyapunov-Schmidt method. In addition, using Schauder's fixed-point theorem and the connectivity theories of the solution set of compact vector fields, we obtained the existence and multiplicity of solutions to the second-order discrete resonance problem with eigenparameter-dependent boundary conditions.
[1] | J. Rodríguez, Nonlinear discrete Sturm-Liouville problems, J. Math. Anal. Appl., 308 (2005), 380–391. https://doi.org/10.1016/j.jmaa.2005.01.032 doi: 10.1016/j.jmaa.2005.01.032 |
[2] | R. Y. Ma, Nonlinear discrete Sturm-Liouville problems at resonance, Nonlinear Anal., 67 (2007), 3050–3057. https://doi.org/10.1016/j.na.2006.09.058 doi: 10.1016/j.na.2006.09.058 |
[3] | T. S. He, Y. T. Xu, Positive solutions for nonlinear discrete second-order boundary value problems with parameter dependence, J. Math. Anal. Appl., 379 (2011), 627–636. https://doi.org/10.1016/j.jmaa.2011.01.047 doi: 10.1016/j.jmaa.2011.01.047 |
[4] | S. Smirnov, Green's function and existence of solutions for a third-order boundary value problem involving integral condition, Lith. Math. J., 62 (2022), 509–518. https://doi.org/10.1007/s10986-022-09576-7 doi: 10.1007/s10986-022-09576-7 |
[5] | G. Zhang, S. Ge, Existence of positive solutions for a class of discrete Dirichlet boundary value problems, Appl. Math. Lett., 48 (2015), 1–7. https://doi.org/10.1016/j.aml.2015.03.005 doi: 10.1016/j.aml.2015.03.005 |
[6] | C. W. Ha, C. C. Kuo, On the solvability of a two-point boundary value problem at resonance Ⅱ, Topol. Methods Nonlinear Anal., 11 (1998), 159–168. https://doi.org/10.12775/tmna.1998.010 doi: 10.12775/tmna.1998.010 |
[7] | D. Maroncelli, J. Rodríguez, On the solvability of nonlinear discrete Sturm-Liouville problems at resonance, Int. J. Differ. Equations, 12 (2017), 119–129. |
[8] | C. H. Gao, Y. L. Wang, L. Lv, Spectral properties of discrete Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions, Acta Math. Sci., 40 (2020), 755–781. https://doi.org/10.1007/s10473-020-0312-5 doi: 10.1007/s10473-020-0312-5 |
[9] | B. Freedman, J. Rodríguez, On nonlinear discrete Sturm-Liouville boundary value problems with unbounded nonlinearities, J. Differ. Equations Appl., 28 (2022), 1–9. https://doi.org/10.1080/10236198.2021.2017426 doi: 10.1080/10236198.2021.2017426 |
[10] | J. Henderson, R. Luca, Existence and multiplicity for positive solutions of a second-order multi-point discrete boundary value problem, J. Differ. Equations Appl., 19 (2013), 418–438. https://doi.org/10.1080/10236198.2011.648187 doi: 10.1080/10236198.2011.648187 |
[11] | Z. J. Du, F. C. Meng, Solutions to a second-order multi-point boundary value problem at resonance. Acta Math. Sci., 30 (2010), 1567–1576. https://doi.org/10.1016/S0252-9602(10)60150-6 doi: 10.1016/S0252-9602(10)60150-6 |
[12] | N. Kosmatov, A singular non-local problem at resonance, J. Math. Anal. Appl., 394 (2012), 425–431. https://doi.org/10.1016/j.jmaa.2012.04.069 doi: 10.1016/j.jmaa.2012.04.069 |
[13] | D. Maroncelli, J. Rodríguez, Existence theory for nonlinear Sturm-Liouville problems with non-local boundary conditions, Differ. Equations Appl., 10 (2018), 147–161. |
[14] | Z. H. Li, X. B. Shu, T. Y. Miao, The existence of solutions for Sturm-Liouville differential equation with random impulses and boundary value problems, Bound. Value Probl., 97 (2021). https://doi.org/10.1186/s13661-021-01574-x doi: 10.1186/s13661-021-01574-x |
[15] | Z. H. Li, X. B. Shu, F. Xu, The existence of upper and lower solutions to second order random impulsive differential equation with boundary value problem, AIMS Math., 5 (2020), 6189–6210. https://doi.org/10.3934/math.2020398 doi: 10.3934/math.2020398 |
[16] | R. Y. Ma, Y. R. Yang, Existence result for a singular nonlinear boundary value problem at resonance, Nonlinear Anal., 68 (2008), 671–680. https://doi.org/10.1016/j.na.2006.11.030 doi: 10.1016/j.na.2006.11.030 |
[17] | C. T. Fulton, S. Pruess, Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions, J. Math. Anal. Appl., 71 (1979), 431–462. https://doi.org/10.1016/0022-247X(79)90203-8 doi: 10.1016/0022-247X(79)90203-8 |
[18] | C. H. Gao, R. Y. Ma, Eigenvalues of discrete Sturm-Liouville problems with eigenparameter dependent boundary conditions, Linear Algebra Appl., 503 (2016), 100–119. https://doi.org/10.1016/j.laa.2016.03.043 doi: 10.1016/j.laa.2016.03.043 |
[19] | N. Dunford, J. T. Schwartz, Linear Operators, Part 1: General Theory, John Wiley & Sons, New York, 1988. |
[20] | J. T. Schwartz, Nonlinear Functional Analysis, CRC Press, New York, 1969. |