Research article Special Issues

Positive solutions for fractional iterative functional differential equation with a convection term

  • Received: 17 November 2022 Revised: 31 January 2023 Accepted: 02 February 2023 Published: 09 February 2023
  • In this paper, we deal with the fractional iterative functional differential equation nonlocal boundary value problem with a convection term. By using the fixed point theorems, some results about existence, uniqueness, continuous dependence and multiplicity of positive solutions are derived.

    Citation: Qingcong Song, Xinan Hao. Positive solutions for fractional iterative functional differential equation with a convection term[J]. Electronic Research Archive, 2023, 31(4): 1863-1875. doi: 10.3934/era.2023096

    Related Papers:

  • In this paper, we deal with the fractional iterative functional differential equation nonlocal boundary value problem with a convection term. By using the fixed point theorems, some results about existence, uniqueness, continuous dependence and multiplicity of positive solutions are derived.



    加载中


    [1] I. Podlubny, Fraction Differential Equations, Academic Press, New York, 1999.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [3] Y. Xu, W. Li, Finite-time synchronization of fractional-order complex-valued coupled systems, Physica A, 549 (2020), 123903. https://doi.org/10.1016/j.physa.2019.123903 doi: 10.1016/j.physa.2019.123903
    [4] X. J. Yang, J. A. T. Machado, A new fractal nonlinear Burgers' equation arising in the acoustic signals propagation, Math. Methods Appl. Sci., 42 (2019), 7539–7544. https://doi.org/10.1002/mma.5904 doi: 10.1002/mma.5904
    [5] X. Yang, F. Gao, Y. Ju, General Fractional Derivatives with Applications in Viscoelasticity, Academic Press, London, 2020.
    [6] Y. Xu, Y. Li, W. Li, Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights, Commun. Nonlinear Sci. Numer. Simul., 85 (2020), 105239. https://doi.org/10.1016/j.cnsns.2020.105239 doi: 10.1016/j.cnsns.2020.105239
    [7] X. Meng, M. Stynes, The Green's function and a maximum principle for a Caputo two-point boundary value problem with a convection term, J. Math. Anal. Appl., 461 (2018), 198–218. https://doi.org/10.1016/j.jmaa.2018.01.004 doi: 10.1016/j.jmaa.2018.01.004
    [8] Z. Bai, S. Sun, Z. Du, Y. Chen, The Green function for a class of Caputo fractional differential equations with a convection term, Fract. Calc. Appl. Anal., 23 (2020), 787–798. https://doi.org/10.1515/fca-2020-0039 doi: 10.1515/fca-2020-0039
    [9] Y. Wang, X. Li, Y. Huang, The Green's function for Caputo fractional boundary value problem with a convection term, AIMS Math., 7 (2022), 4887–4897. https://doi.org/10.3934/math.2022272 doi: 10.3934/math.2022272
    [10] Y. Wei, Z. Bai, Solvability of some fractional boundary value problems with a convection term, Discrete Dyn. Nat. Soc., 2019 (2019), 1230502. https://doi.org/10.1155/2019/1230502 doi: 10.1155/2019/1230502
    [11] C. S. Goodrich, Nonlocal differential equations with convolution coefficients and applications to fractional calculus, Adv. Nonlinear Stud., 21 (2021), 767–787. https://doi.org/10.1515/ans-2021-2145 doi: 10.1515/ans-2021-2145
    [12] C. S. Goodrich, Coercive nonlocal elements in fractional differential equations, Positivity, 21 (2017), 377–394. https://doi.org/10.1007/s11117-016-0427-z doi: 10.1007/s11117-016-0427-z
    [13] Z. Wei, Q. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), 260–272. https://doi.org/10.1016/j.jmaa.2010.01.023 doi: 10.1016/j.jmaa.2010.01.023
    [14] Z. Cen, L. B. Liu, J. Huang, A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative, Appl. Math. Lett., 102 (2020), 106086. https://doi.org/10.1016/j.aml.2019.106086 doi: 10.1016/j.aml.2019.106086
    [15] M. I. Abbas, M. A. Ragusa, Nonlinear fractional differential inclusions with non-singular Mittag-Leffler kernel, AIMS Math., 7 (2022), 20328–20340. https://doi.org/10.3934/math.20221113 doi: 10.3934/math.20221113
    [16] M. Areshi, A. M. Zidan, R. Shah, K. Nonlaopon, A Modified techniques of fractional-order Cauchy-reaction diffusion equation via Shehu transform, J. Funct. Spaces, 2021 (2021), 5726822. https://doi.org/10.1155/2021/5726822 doi: 10.1155/2021/5726822
    [17] T. G. Chakuvinga, F. S. Topal, Existence of positive solutions for the nonlinear fractional boundary value problems with $p$-Laplacian, Filomat, 35 (2021), 2927–2949. https://doi.org/10.2298/FIL2109927C doi: 10.2298/FIL2109927C
    [18] A. Bouakkaz, Bounded solutions to a three-point fourth-order iterative boundary value problem, Rocky Mt. J. Math., 52 (2022), 793–803. https://doi.org/10.1216/rmj.2022.52.793 doi: 10.1216/rmj.2022.52.793
    [19] A. Bouakkaz, A. Ardjouni, A. Djoudi, Periodic solutions for a nonlinear iterative functional differential equation, Electron. J. Math. Anal. Appl., 7 (2019), 156–166. Available from: http://math-frac.org/Journals/EJMAA/Vol7(1)_Jan_2019/Vol7(1)_Papers/14_EJMAA_Vol7(1)_Jan_2019_pp_156-166.pdf
    [20] H. Zhao, J. Chen, Maximal and minimal nondecreasing bounded solutions of a second order iterative functional differential equation, J. Appl. Anal. Comput., 11 (2021), 2601–2610. https://doi.org/10.11948/20210043 doi: 10.11948/20210043
    [21] S. Cheraiet, A. Bouakkaz, R. Khemis, Bounded positive solutions of an iterative three-point boundary-value problem with integral boundary condtions, J. Appl. Math. Comput., 65 (2021), 597–610. https://doi.org/10.1007/s12190-020-01406-8 doi: 10.1007/s12190-020-01406-8
    [22] H. Zhao, J. Liu, Periodic solutions of an iterative functional differential equation with variable coefficients, Math. Methods Appl. Sci., 40 (2017), 286–292. https://doi.org/10.1002/mma.3991 doi: 10.1002/mma.3991
    [23] J. Zhou, J. Shen, Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations, Discrete Contin. Dyn. Syst. - Ser. B, 27 (2022), 3605–3624. https://doi.org/10.3934/dcdsb.2021198 doi: 10.3934/dcdsb.2021198
    [24] S. Chouaf, A. Bouakkaz, R. Khemis, On bounded solutions of a second-order iterative boundary value problem, Turk. J. Math., 46 (2022), 453–464. https://doi.org/10.3906/mat-2106-45 doi: 10.3906/mat-2106-45
    [25] A. Bouakkaz, R. Khemis, Positive periodic solutions for revisited Nicholson's blowflies equation with iterative harvesting term, J. Math. Anal. Appl., 494 (2021), 124663. https://doi.org/10.1016/j.jmaa.2020.124663 doi: 10.1016/j.jmaa.2020.124663
    [26] A. Bouakkaz, A. Ardjouni, R. Khemis, A. Djoudi, Periodic solutions of a class of third-order functional differential equations with iterative source terms, Bol. Soc. Mat. Mex., 26 (2020), 443–458. https://doi.org/10.1007/s40590-019-00267-x doi: 10.1007/s40590-019-00267-x
    [27] R. W. Leggett, L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673–688. https://doi.org/10.1512/iumj.1979.28.28046 doi: 10.1512/iumj.1979.28.28046
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1359) PDF downloads(98) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog