This paper studies a discontinuous Sturm-Liouville problem in which the spectral parameter appears not only in the differential equation but also in the transmission conditions. By constructing an appropriate Hilbert space and inner product, the eigenvalue and eigenfunction problems of the Sturm-Liouville problem are transformed into an eigenvalue problem of a certain self-adjoint operator. Next, the eigenfunctions of the problem and some properties of the eigenvalues are given via construction of the basic solution. The Green's function for the Sturm-Liouville problem is also given. Finally, the continuity of the eigenvalues and eigenfunctions of the problem is discussed. Especially, the differential expressions of the eigenvalues for some parameters have been obtained, including the parameters in the eigenparameter-dependent transmission conditions.
Citation: Lanfang Zhang, Jijun Ao, Na Zhang. Eigenvalue properties of Sturm-Liouville problems with transmission conditions dependent on the eigenparameter[J]. Electronic Research Archive, 2024, 32(3): 1844-1863. doi: 10.3934/era.2024084
This paper studies a discontinuous Sturm-Liouville problem in which the spectral parameter appears not only in the differential equation but also in the transmission conditions. By constructing an appropriate Hilbert space and inner product, the eigenvalue and eigenfunction problems of the Sturm-Liouville problem are transformed into an eigenvalue problem of a certain self-adjoint operator. Next, the eigenfunctions of the problem and some properties of the eigenvalues are given via construction of the basic solution. The Green's function for the Sturm-Liouville problem is also given. Finally, the continuity of the eigenvalues and eigenfunctions of the problem is discussed. Especially, the differential expressions of the eigenvalues for some parameters have been obtained, including the parameters in the eigenparameter-dependent transmission conditions.
[1] | Q. Kong, A. Zettl, Eigenvalues of regular Sturm-Liouville problems, J. Differ. Equations, 131 (1996), 1–19. https://doi.org/10.1006/jdeq.1996.0154 doi: 10.1006/jdeq.1996.0154 |
[2] | Q. Kong, A. Zettl, Dependence of eigenvalues of Sturm-Liouville problems on the boundary, J. Differ. Equations, 126 (1996), 389–407. https://doi.org/10.1006/jdeq.1996.0056 doi: 10.1006/jdeq.1996.0056 |
[3] | A. Zettl, Sturm–Liouville Theory, American Mathematical Society, Providence, RI, USA, 2005. |
[4] | A. Zettl, Eigenvalues of regular self-adjoint Sturm-Liouville problems, Commun. Appl. Anal., 18 (2014), 365–400. |
[5] | M. Z. Zhang, K. Li, Dependence of eigenvalues of Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 378 (2020), 125214. https://doi.org/10.1016/j.amc.2020.125214 doi: 10.1016/j.amc.2020.125214 |
[6] | G. Meng, M. Zhang, Dependence of solutions and eigenvalues of measure differential equations on measures, J. Differ. Equations, 254 (2013), 2196–2232. https://doi.org/10.1016/j.jde.2012.12.001 doi: 10.1016/j.jde.2012.12.001 |
[7] | H. Zhu, Y. M. Shi, Continuous dependence of the n-th eigenvalue of self-adjoint discrete Sturm-Liouville problems on the problem, J. Differ. Equations, 260 (2016), 5987–6016. https://doi.org/10.1016/j.jde.2015.12.027 doi: 10.1016/j.jde.2015.12.027 |
[8] | X. Hu, L. Liu, L Wu, H. Zhu, Singularity of the n-th eigenvalue of high dimensional Sturm-Liouville problems, J. Differ. Equations, 266 (2019), 4106–4136. https://doi.org/10.1016/j.jde.2018.09.028 doi: 10.1016/j.jde.2018.09.028 |
[9] | K. Li, M. Z. Zhang, Z. W. Zheng, Dependence of eigenvalues of Dirac system on the parameters, Stud. Appl. Math., 150 (2023), 1201–1216. https://doi.org/10.1111/sapm.12567 doi: 10.1111/sapm.12567 |
[10] | M. Z. Zhang, Y. C. Wang, Dependence of eigenvalues of Sturm-Liouville problems with interface conditions, Appl. Math. Comput., 265 (2015), 31–39. https://doi.org/10.1016/j.amc.2015.05.002 doi: 10.1016/j.amc.2015.05.002 |
[11] | C. Fulton, S. Pruess, Numerical methods for a singular eigenvalue problem with eigenparameter in the boundary conditions, J. Math. Anal. Appl., 71 (1979), 431–462. https://doi.org/10.1016/0022-247X(79)90203-8 doi: 10.1016/0022-247X(79)90203-8 |
[12] | C. Tretter, Boundary eigenvalue problems with differential equations $N\eta = \lambda P\eta$ with $\lambda$-polynomial boundary conditions, J. Differ. Equations, 170 (2001), 408–471. https://doi.org/10.1006/jdeq.2000.3829 doi: 10.1006/jdeq.2000.3829 |
[13] | J. Walter, Regular eigenvalue problems with eigenvalue parameter in the boundary conditions, Math. Z., 133 (1973), 301–312. |
[14] | C. Fulton, Two-point boundary value problems with eigenvalue parameter containted in the boundary conditions, Proc. R. Soc. Edinburgh Sect. A: Math., 77 (1977), 293–308. https://doi.org/ 10.1017/S030821050002521X doi: 10.1017/S030821050002521X |
[15] | P. Binding, P. Browne, B. Watson, Sturm-Liouville problems with boundary conditions rationally dependent on the eigenparameter, J. Comput. Appl. Math., 148 (2002), 147–168. https://doi.org/10.1016/S0377-0427(02)00579-4 doi: 10.1016/S0377-0427(02)00579-4 |
[16] | C. H. Gao, R. Y. Ma, Eigenvalues of discrete Sturm-Liouville problems with eigenparameter dependent boundary conditions, Linear Algebra Appl., 503 (2016), 100–119. https://doi.org/10.1016/j.laa.2016.03.043 doi: 10.1016/j.laa.2016.03.043 |
[17] | J. J. Ao, J. Sun, Matrix representations of Sturm-Liouville problems with coupled eigenparameter-dependent boundary conditions, Appl. Math. Comput., 244 (2014), 142–148. https://doi.org/10.1016/j.amc.2014.06.096 doi: 10.1016/j.amc.2014.06.096 |
[18] | L. Zhang, J. J. Ao, On a class of inverse Sturm-Liouville problems with eigenparameter dependent boundary conditions, Appl. Math. Comput., 362 (2019), 124553. https://doi.org/10.1016/j.amc.2019.06.067 doi: 10.1016/j.amc.2019.06.067 |
[19] | K. Li, Y. Bai, W. Y. Wang, F. W. Meng, Self-adjoint realization of a class of third-order differential operators witn an eigenparameter contained in the boundary conditions, J. Appl. Anal. Comput., 10 (2020), 2631–2643. https://doi.org/10.11948/20200002 doi: 10.11948/20200002 |
[20] | K. R. Mamedov, U. Demirbilek, On the expansion formula for a singular Sturm-Liouville operator, J. Sci. Arts, 1 (2021), 67–76. http://dx.doi.org/10.46939/J.Sci.Arts-21.1-a07s doi: 10.46939/J.Sci.Arts-21.1-a07s |
[21] | H. Y. Zhang, J. J. Ao, D. Mu, Eigenvalues of discontinuous third-order boundary value problems with eigenparameter-dependent boundary conditions, J. Math. Anal. Appl., 506 (2022), 125680. https://doi.org/10.1016/j.jmaa.2021.125680 doi: 10.1016/j.jmaa.2021.125680 |
[22] | X. X. Lv, J. J. Ao, A. Zettl, Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem, J. Math. Anal. Appl., 456 (2017), 671–685. https://doi.org/10.1016/j.jmaa.2017.07.021 doi: 10.1016/j.jmaa.2017.07.021 |
[23] | E. Uğurlu, Third-order boundary value transmission problems, Turk. J. Math., 43 (2019), 1518–1532. https://doi.org/10.3906/mat-1812-36 doi: 10.3906/mat-1812-36 |
[24] | K. Li, J. Sun, X. L. Hao, Eigenvalues of regular fourth-order Sturm-Liouville problems with transmission conditions, Math. Methods Appl. Sci., 40 (2017), 3538–3551. https://doi.org/10.1002/mma.4243 doi: 10.1002/mma.4243 |
[25] | Z. Akdoǧan, M. Demirci, O. S. Mukhtarov, Discontinuous Sturm-Liouville problems with eigenparameter-dependent boundary and transmissions conditions, Acta Appl. Math., 86 (2005), 329–344. https://doi.org/10.1007/s10440-004-7466-3 doi: 10.1007/s10440-004-7466-3 |
[26] | G. F. Du, C. H. Gao, J. J. Wang, Spectral analysis of discontinuous Sturm-Liouville operators with Herglotzs transmission. Electron. Res. Arch., 31 (2023), 2108–2119. https://doi.org/10.3934/era.2023108 doi: 10.3934/era.2023108 |
[27] | C. Bartels, S. Currie, B. A. Watson, Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: eigenvalue asymptotics, Complex Anal. Oper. Theory, 15 (2021), 71–99. https://doi.org/10.1007/s11785-021-01119-1 doi: 10.1007/s11785-021-01119-1 |
[28] | C. Bartels, S. Currie, M. Nowaczyk, B. A.Watson, Sturm-Liouville problems with transfer condition Herglotz dependent on the eigenparameter: Hilbert space formulation, Integr. Equations Oper. Theory, 90 (2018), 34–53. https://doi.org/10.1007/s00020-018-2463-5 doi: 10.1007/s00020-018-2463-5 |
[29] | A. S. Ozkan, B. Keskin, Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Probl. Sci. Eng., 20 (2012), 799–808. https://doi.org/10.1080/17415977.2011.652957 doi: 10.1080/17415977.2011.652957 |
[30] | Z. Wei, G. Wei, Inverse spectral problem for non self-adjoint Dirac operator with boundary and jump conditions dependent on the spectral parameter, J. Comput. Appl. Math., 308 (2016), 199–214. https://doi.org/ 10.1016/j.cam.2016.05.018 doi: 10.1016/j.cam.2016.05.018 |
[31] | R. Carlson, Hearing point masses in a string, SIAM J. Math. Anal., 26 (1995), 583–600. https://doi.org/10.1137/S0036141093244283 doi: 10.1137/S0036141093244283 |
[32] | M. A. Naimark, Linear Differential Operators, Society for Industrial and Applied Mathematics, Ungar, New York, USA, 1968. |
[33] | E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford: Clarendon Press, London, UK, 1946. |