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Abstract: This paper studies a discontinuous Sturm-Liouville problem in which the spectral parameter
appears not only in the differential equation but also in the transmission conditions. By constructing an
appropriate Hilbert space and inner product, the eigenvalue and eigenfunction problems of the Sturm-
Liouville problem are transformed into an eigenvalue problem of a certain self-adjoint operator. Next,
the eigenfunctions of the problem and some properties of the eigenvalues are given via construction
of the basic solution. The Green’s function for the Sturm-Liouville problem is also given. Finally, the
continuity of the eigenvalues and eigenfunctions of the problem is discussed. Especially, the differential
expressions of the eigenvalues for some parameters have been obtained, including the parameters in the
eigenparameter-dependent transmission conditions.
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1. Introduction

Sturm’s theory is one of the most practical and extensive theoretical studies in both theoretical and
applied mathematics. Many problems in mathematics and physics need to be expressed as Sturm-
Liouville (S-L) boundary–eigenvalue problems. Among the huge number of studies on S-L problems,
the dependence of eigenvalues on the problems is one of the more important research branches, and it
has contributed many important developments [1–5]. These investigations are crucial to the development
of the basic theory of differential operators and the accompanying numerical calculations for the spectra,
as well as the inverse spectral problems. For example, in the classical S-L problems, the eigenvalue
dependence properties have been extensively studied by many authors [1–4]. In [6], the authors have
studied similar problems on differential equations, and in [7] and [8] the authors extended the problem
to discrete S-L problems and high-dimensional S-L problems. The dependence of eigenvalues of the
Dirac equation on the problems has also been considered in a recent paper [9].
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In recent years, the theory of differential equations with discontinuous properties, that is the S-L
problems with transmission conditions have also attracted much attention, and the corresponding studies
on eigenvalue dependence can also be found in [10]. And another research topic related to S-L problems
is the so called S-L problem with eigenparameter-dependent boundary conditions(BCs). These topics
have been triggered by physical issues like heat conduction problems and vibrating string problems,
as well as magnetic fluid mechanics [11–13]. There are many studies on these problems, including
self-adjoint realization, spectral properties, inverse spectral theory etc., see [14–20]. There are still
several studies on the eigenvalue dependence on the problems for higher-order boundary value problems
with transmission conditions or eigenparameter-dependent BCs [21–24].

As an organic combination of the above mentioned two problems, the S-L problems with
eigenparameter-dependent transmission conditions have attracted some scholars attention [25–30].
In [25], the asymptotic expressions for eigenvalues of the S-L problem with the spectral parameter con-
tained in the transmission conditions were studied by the authors. In [27,28], the asymptotic expressions
for eigenvalues and the Green’s functions for the S-L problem with Herglotz-type eigenparameter-
dependent transmission conditions are given for an appropriate Hilbert space. The corresponding inverse
spectral problems can be found in [29, 30]. However, corresponding studies of the eigenvalue depen-
dence of such problems have not yet been given, especially for the spectral parameter that appears in
both of the transmission conditions. Such problems appear in non-uniform vibrating strings, electronic
signal amplifiers and other issues of sciences [27, 28, 31]. Motivated by this, in this paper, we will
consider the S-L problems with eigenparameter-dependent transmission conditions and show some
eigenvalue properties, especially the Green’s function and eigenvalue dependence of such problems. We
show the continuity and differential properties of the eigenvalues for the data, including the BCs, the
coefficient functions and the eigenparameter-dependent transmission conditions.

This paper is divided into seven parts. Following this introduction, in Section 2, the basic notations
and the operator theoretic formulation of the considered problems, as well as some properties are
explained. In Section 3, several basic properties of eigenvalues and eigenfunctions are given. Section 4
shows the Green’s function for the problem. The continuity of eigenvalues and eigenfunctions is proved
in Section 5. In Section 6, the differential expressions for the eigenvalues for each parameter are derived.
At last, the concluding remarks or this study are provided in Section 7.

2. Notation and basic properties

In this section we will describe the basic problem of the present paper and show some basic properties
corresponding to this eigenvalue problem. To this end, we first convert the considered problem to a
linear operator by constructing a Hilbert space associated with a new inner product that is based on the
BCs and the eigenparameter-dependent transmission conditions. Then we prove the self-adjointness of
the operator and show that the eigenvalues are real and the eigenfunctions corresponding to different
eigenvalues are orthogonal to each other.

Consider the second-order S-L differential equation given by

−(pz′)′ + qz = µwz on K = [a, e) ∪ (e, b], −∞ < a < e < b < ∞, (2.1)

with the BCs
cos γ1z(a) − sin γ1(pz′)(a) = 0, γ1 ∈ [0, π), (2.2)

Electronic Research Archive Volume 32, Issue 3, 1844–1863.



1846

cos γ2z(b) − sin γ2(pz′)(b) = 0, γ2 ∈ (0, π], (2.3)

and eigenparameter-dependent transmission conditions given by

z(e−) + (µη1 − ξ1)(pz′)(e−) + (pz′)(e+) = 0, (2.4)

(pz′)(e−) − z(e+) + (µη2 − ξ2)(pz′)(e+) = 0. (2.5)

Here µ is the spectral parameter, z(e−) denotes the left limit of the function z at point e, z(e+) denotes
the right limit of the function z at point e, and the coefficient functions satisfy the following conditions:

r =
1
p
, q,w ∈ L(K,R), and p > 0,w > 0, a.e. on K, (2.6)

where L(K,R) represents the Lebesgue integrable real valued functions on K. And we assume that the
parameters in transmission conditions satisfy the following conditions:

ηi, ξi ∈ R, ηi > 0, i = 1, 2. (2.7)

Let θ[z] = w−1(−(pz′)′ + qz) on K and define a weighted space as follows:

Hw = L2
w(K) =

{
z :

∫ e

a
|z(x)|2w(x)dx +

∫ b

e
|z(x)|2w(x)dx < ∞

}
,

together with the inner product ⟨ f , g⟩Hw =
∫ e

a
f ḡwdx +

∫ b

e
f ḡwdx for any f , g ∈ Hw, where the overbar

denotes the complex conjugate.
For any z,Λ ∈ Hw, the Lagrange bracket [z,Λ] of the functions z and Λ can then be introduced

as follows:
[z,Λ] = z(pΛ̄′) − (pz′)Λ̄. (2.8)

Let us consider the set associated with the functions considered in the present paper as follows:

S =
{
z ∈ L2

w(K) : z, (pz′) ∈ ACloc(K), θ[z] ∈ L2
w(K)

}
,

where ACloc(K) denotes the set of all local absolutely continuous functions on K; then, for two arbitrary
functions z,Λ ∈ S , the following Lagrange identity holads:

⟨θ[z],Λ⟩Hw − ⟨z, θ[Λ]⟩Hw = [z,Λ]e−
a + [z,Λ]b

e+

where [z,Λ]t2
t1 = [z,Λ](t2) − [z,Λ](t1).

Define the direct sum space as follows:

H = Hw ⊕ C ⊕ C,

and the new inner product on this space as follows:

⟨F,G⟩H =
∫ e

a
f ḡwdx +

∫ b

e
f ḡwdx + η1 f1g1 + η2 f2g2,
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for any F = ( f (x), f1, f2)T , G = (g(x), g1, g2)T ∈ H . Then it is easy to verify that this direct sum space
H is a Hilbert space.

The following notations shall be utilized for a brief clarification

M̂1(z) =
1
η1

(ξ1(pz′)(e−) − z(e−) − (pz′)(e+)), M1(z) = (pz′)(e−),

M̂2(z) =
1
η2

(ξ2(pz′)(e+) + z(e+) − (pz′)(e−)), M2(z) = (pz′)(e+).

Then the eigenparameter-dependent transmission conditions given by (2.4) and (2.5) can be expressed
as follow:

µM1(z) = M̂1(z), µM2(z) = M̂2(z).

Set

Aa =

(
cos γ1 − sin γ1

0 0

)
, Bb =

(
0 0

cos γ2 − sin γ2

)
,

Cµ =
(
1 µη1 − ξ1
0 1

)
, Dµ =

(
0 1
−1 µη2 − ξ2

)
,

then the BCs (2.2) and (2.3) can be written as follows:

AaZ(a) + BbZ(b) = 0, Z =
(

z
pz′

)
, (2.9)

and the eigenparameter-dependent transmission conditions given by (2.4) and (2.5) can be written
as follows:

CµZ(e−) + DµZ(e+) = 0, Z =
(

z
pz′

)
. (2.10)

Now we define a new operator and its domain as follows:

S(T) = {Z =


z
z1

z2

 ∈ H : z ∈ S , z(e ± 0) = lim
x→e±0

z(x), (pz′)(e ± 0) = lim
x→e±0

(pz′)(x)

exist, and z1 =M1(z), z2 =M2(z), AaZ(a) + BbZ(b) = 0},

with the following rule

T


z
z1

z2

 =

θ[z]
M̂1(z)
M̂2(z)

 ,
where θ[z] = µz, z ∈ S , x ∈ K, satisfying (2.6) and (2.7). Thus, the problem given by (2.1)–(2.5) can be
expressed in the following form

TZ = µZ, Z =


z
z1

z2

 ∈ S(T). (2.11)

Next we will discuss the self-adjointness of the operator T.
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Lemma 1. S(T) is dense inH .

Proof. Suppose that F = ( f (x), f1, f2)T ∈ H and F⊥S(T); we will prove that F = (0, 0, 0)T . Since
C∞0 ⊕ {0} ⊕ {0} ⊂ S(T), for arbitrary G = (g(x), 0, 0)T ∈ C∞0 ⊕ {0} ⊕ {0}, we have

⟨F,G⟩ =
∫ e

a
f ḡwdx +

∫ b

e
f ḡwdx = 0.

Because C∞0 is dense in L2
w[a, b], it follows that f (x) = 0, that is, F = (0, f1, f2)T . For any Z =

(z(x), z1, z2)T ∈ S(T), we have
⟨F,Z⟩ = η1 f1z1 + η2 f2z2 = 0,

by the inner product in H . Since z1 and z2 are arbitrary, we have that f1 = 0 and f2 = 0. Hence
F = (0, 0, 0)T , and the proof is completed.

Lemma 2. The operator T is symmetric.

Proof. Let F = ( f , f1, f2)T and G = (g, g1, g2)T ∈ S(T); then,

⟨TF,G⟩ − ⟨F,TG⟩ =
∫ e

a
[(−p f ′)′ḡ + q f ḡ]dx +

∫ b

e
[(−p f ′)′ḡ + q f ḡ]dx

− [
∫ e

a
[(−pḡ′)′ f + qḡ f ]dx +

∫ b

e
[(−pḡ′)′ f + qḡ f ]dx] + η1M̂1( f )M1(ḡ)

+ η2M̂2( f )M2(ḡ) − [η1M̂1(ḡ)M1( f ) + η2M̂2(ḡ)M2( f )]
= [ f , g]e−

a + [ f , g]b
e+ + [ f , g](e+) − [ f , g](e−).

(2.12)

So
⟨TF,G⟩ − ⟨F,TG⟩ = [ f , g](b) − [ f , g](a). (2.13)

By the BC (2.3), when γ2 ∈ (0, π2 ) ∪ (π2 , π], we have

[ f , g](b) = tan γ2(p f ′)(b)(pg′)(b) − tan γ2(p f ′)(b)(pg′)(b) = 0, (2.14)

and when γ2 =
π
2 , we have that (pz′)(b) = 0; thus, we can conclude that [ f , g](b) = 0.

Similarly
[ f , g](a) = 0. (2.15)

Consequently, we have
⟨TF,G⟩ − ⟨F,TG⟩ = 0.

Therefore, the operator T is symmetric.

Theorem 1. T is a self-adjoint operator inH .

Proof. As T is symmetric, now we need to prove that for any Z = (z(x), z1, z2)T ∈ S(T) and some Y ∈
S(T∗), U ∈ H satisfying that ⟨TZ,Y⟩ = ⟨Z,U⟩, then Y ∈ S(T) and TY = U, where Y = (y(x), y1, y2)T ,
U = (u(x), u1, u2)T and T∗ is the adjoint operator of T, i.e.,

(1) y(x), (py′)(x) ∈ AC(K), θ[y] ∈ Hw;
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(2) cos γ1y(a) − sin γ1(py′)(a) = 0, cos γ2y(b) − sin γ2(py′)(b) = 0;

(3) y1 =M1(y) = (py′)(e−), y2 =M2(y) = (py′)(e+);

(4) u1 = M̂1(y) = 1
η1

(ξ1(py′)(e−) − y(e−) − (py′)(e+));

(5) u2 = M̂2(y) = 1
η2

(ξ2(py′)(e+) + y(e+) − (py′)(e−));

(6) u(x) = θ[y].

First, for any V = (v(x), 0, 0)T ∈ C∞0 ⊕ {0} ⊕ {0} ⊂ S(T), we have that ⟨TV,Y⟩ = ⟨V,U⟩; hence,∫ e

a
(θ[v])ȳwdx +

∫ b

e
(θ[v])ȳwdx =

∫ e

a
vūwdx +

∫ b

e
vūwdx

holds, that is, ⟨θ[v], y⟩Hw = ⟨v, u⟩Hw . By the classical theory of differential operators, it follows that (1)
and (6) hold.

Next by (6) we get that for all Z = (z(x), z1, z2)T ∈ S(T), ⟨TZ,Y⟩ = ⟨Z,U⟩ can be written as follows:

⟨θ[z], y⟩Hw + η1M̂1(z)y1 + η2M̂2(z)y2 = ⟨z, θ[y]⟩Hw + η1M1(z)u1 + η2M2(z)u2.

Given that
⟨θ[z], y⟩Hw − ⟨z, θ[y]⟩Hw = [z, y](e−) − [z, y](e+),

we arrive at

η1[M1(z)u1 − M̂1(z)y1] + η2[M2(z)u2 − M̂2(z)y2] = [z, y](e−) − [z, y](e+). (2.16)

Using Naimark’s patching lemma [32], we choose Z = (z(x), z1, z2)T ∈ S(T) such that

z(e−) = 1, (pz′)(e−) = 0, z(e+) = 0, (pz′)(e+) = 0,

this means that
M1(z) = 0, M2(z) = 0, M̂1(z) = −

1
η1
, M̂2(z) = 0,

then by (2.16), we have that y1 = M1(y) = (py′)(e−). Using that similar method, one can prove a
y2 =M2(y) = (py′)(e+) is also true. Therefore, (3) holds.

We choose Z = (z(x), z1, z2)T ∈ S(T) such that

z(e−) = 0, (pz′)(e−) = 1, z(e+) = 0, (pz′)(e+) = 0,

which imply that

M1(z) = 1, M2(z) = 0, M̂1(z) =
ξ1
η1
, M̂2(z) = −

1
η2
,

then by (2.16), we have that u1 = M̂1(y) = 1
η1

(ξ1(py′)(e−) − y(e−) − (py′)(e+)). Therefore, (4) holds.
Using a similar method, one can prove that (5) is also true.

Choosing Z = (z(x), z1, z2)T ∈ S(T) such that

z(a) = sin γ1, (pz′)(a) = cos γ1,

and then combining the proof of symmetry and [z, y](a) = 0, we have that cos γ1y(a)− sin γ1(py′)(a) = 0.
Using a similar method, one can prove that cos γ2y(b) − sin γ2(py′)(b) = 0 is also true. Therefore, (2)
holds. Hence, the operator T is self-adjoint.
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Corollary 1. The eigenvalues of the operator T are all real.

Corollary 2. Let Y1(x) and Y2(x) be the eigenfunctions corresponding to two different eigenvalues of
the problem given by (2.1)–(2.5). Then they are orthogonal to each other in the following sense:∫ e

a
Y1(x)Y2(x)wdx +

∫ b

e
Y1(x)Y2(x)wdx + η1M1(Y1)M1(Y2) + η2M2(Y1)M2(Y2) = 0.

3. Eigenvalues and eigenfunctions

In this section we will introduce the Wronskian by constructing the fundamental solutions of the
problem; we shall also that the zeros of the Wronskian constitute the eigenvalues of the S-L problem
and that the eigenvalue problem is simple.

We construct the fundamental solutions of the differential Eq (2.1) as follows

Υ(x, µ) =
{
Υ1(x, µ), x ∈ [a, e),
Υ2(x, µ), x ∈ (e, b],

Λ(x, µ) =
{
Λ1(x, µ), x ∈ [a, e),
Λ2(x, µ), x ∈ (e, b].

Let Υ1µ(x) = Υ1(x, µ) be the solution of Eq (2.1) on the interval [a, e) satisfying the following
initial conditions

z(a) = sin γ1, (pz′)(a) = cos γ1, (3.1)

by virtue of [33], Eq (2.1) has a unique solution Υ1(x, µ) for each µ ∈ C, which is an entire function of µ
for each fixed x ∈ [a, e).

Now we can define the solution Υ2µ(x) = Υ2(x, µ) of Eq (2.1) on the interval (e, b] in terms of
Υ1(e − 0, µ) and (pΥ′1)(e − 0, µ) by applying the following initial conditions

z(e+) = −(µη2 − ξ2)z(e−) − [(µη2 − ξ2)(µη1 − ξ1) − 1](pz′)(e−),
(pz′)(e+) = −(z(e−) + (µη1 − ξ1)(pz′)(e−)).

(3.2)

For each µ ∈ C, Eq (2.1) has a unique solution Υ2(x, µ) on the interval (e, b]. Moreover, Υ2(x, µ) is an
entire function of µ for each fixed x ∈ (e, b].

Let Λ2µ(x) = Λ2(x, µ) be the solution of Eq (2.1) on the interval (e, b] satisfying the following
initial conditions

z(b) = sin γ2, (pz′)(b) = cos γ2, (3.3)

by virtue of [33], Eq (2.1) has a unique solution Λ2(x, µ) for each µ ∈ C, which is an entire function of µ
for each fixed x ∈ (e, b].

Define the solution Λ1µ(x) = Λ1(x, µ) of Eq (2.1) on the interval [a, e) in terms of Λ2(e + 0, µ) and
(pΛ′2)(e + 0, µ) by applying the following initial conditions

z(e−) = −(µη1 − ξ1)z(e+) + [(µη1 − ξ1)(µη2 − ξ2) − 1](pz′)(e+),
(pz′)(e−) = z(e+) − (µη2 − ξ2)(pz′)(e+).

(3.4)

For each µ ∈ C, Eq (2.1) has a unique solution Λ1(x, µ) on the interval [a, e). Moreover, Λ1(x, µ) is an
entire function of µ for each fixed x ∈ [a, e).

From the theory of linear ordinary differential equations, the Wronskians denoted by

ω j(µ) := W(Υ j(x, µ),Λ j(x, µ)), j = 1, 2

are independent of x ∈ K.
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Lemma 3. For each µ ∈ C
ω2(µ) = ω1(µ).

Proof. Due to the Wronskians being independent of x, then by (2.2) and (2.4), it follows that

ω2(µ) = ω2(µ)|x=e = det
(
Υ2(e+, µ) Λ2(e+, µ)

(pΥ′2)(e+, µ) (pΛ′2)(e+, µ)

)
= det

(
f2(µ)Υ1(e−, µ) + h(µ)(pΥ′1)(e−, µ) Υ1(e−, µ) + f1(µ)(pΥ′1)(e−, µ)
f2(µ)Λ1(e−, µ) + h(µ)(pΛ′1)(e−, µ) Λ1(e−, µ) + f1(µ)(pΛ′1)(e−, µ)

)
= det

(
f2(µ) h(µ)

1 f1(µ)

)
ω1(µ) = ω1(µ),

where f1(µ) = µη1 − ξ1, f2(µ) = µη2 − ξ2, h(µ) = f1(µ) f2(µ) − 1.
The proof is completed.

Let
ω(µ) = ω1(µ),

then the following lemma holds.

Lemma 4. The complex number µ is an eigenvalue of the S-L problem given by (2.1)–(2.5) if and only
if µ is the zero point of ω(µ), that is, if ω(µ) = 0 holds.

Proof. Let µ0 be the eigenvalue of the S-L problem given by (2.1)–(2.5) and z(x, µ0) be the eigenfunction
corresponding to µ0. Then we have that ω(µ0) = 0. In fact, if we assume that ω(µ0) , 0, this implies
that W(Υ j(x, µ),Λ j(x, µ)) , 0( j = 1, 2). Then, given (3.1)–(3.4), the functions Υ1(x, µ0), Λ1(x, µ0) and
Υ2(x, µ0), Λ2(x, µ0) are linearly independent in [a, e) and (e, b] respectively. Therefore, the solution
z(x, µ0) of Eq (2.1) can be expressed as follows:

z(x, µ0) =
{

c11Υ1(x, µ0) + c12Λ1(x, µ0), x ∈ [a, e),
d11Υ2(x, µ0) + d12Λ2(x, µ0), x ∈ (e, b],

where at least one constant among c11, c12, d11 and d12 is not zero. However, by incorporating this
representation into the BCs (2.2) and (2.3), we obtain that c12 = 0 and d11 = 0. By incorporating z(x, µ0)
into the transmission conditions given by (2.4) and (2.5), we obtain that c11 = d11 = 0 and d12 = c12 = 0.
This leads to a contradiction; thus, the eigenvalues of the S-L problem given by (2.1)–(2.5) are all zero
points of ω(µ).

Conversely, let ω(µ0) = 0; then, W(Υ1(x, µ0),Λ1(x, µ0)) = 0, and consequently the functions
Υ1(x, µ0), Λ1(x, µ0) are linearly dependent solutions of Eq (2.1) in the interval [a, e), i.e.,

Υ1(x, µ0) = k1Λ1(x, µ0),

for some k1 , 0. In this case, we have

cos γ1Λ(a) − sin γ1(pΛ′)(a) = cos γ1Λ1(a, µ0) − sin γ1(pΛ′1)(a, µ0)
= k1(cos γ1Υ1(a, µ0) − sin γ1(pΥ′1)(a, µ0)) = 0.

(3.5)

Therefore, Λ1(x, µ0) is the solution satisfying the BC (2.2) on the interval [a, e). And Λ2(x, µ0) is the
solution satisfying the BC (2.3) on the interval (e, b]. Thus, Λ(x, µ0) is the solution satisfying the
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BCs (2.2) and (2.3) and the transmission conditions given by (2.4) and (2.5); hence, Λ(x, µ0) is the
eigenfunction corresponding to the eigenvalue µ0 of the problem given by (2.1)–(2.5). This completes
the proof.

Lemma 5. The eigenvalues of the S-L problem given by (2.1)–(2.5) are simple.

Proof. By Corollary 1, since the eigenvalues of the S-L problem given by (2.1)–(2.5) are all real, we let
µ = m, m ∈ R, differentiating the equation θ[Λ(x, µ)] = µΛ(x, µ) with respect to µ; then, we have

θ[Λµ(x, µ)] = µΛµ(x, µ) + Λ(x, µ),

where Λµ(x, µ) is the partial derivative of Λ(x, µ) with respect to µ. By µ = m, then

⟨θ[Λµ],Υ⟩ − ⟨Λµ, θ[Υ]⟩ = ⟨µΛµ + Λ,Υ⟩ − ⟨Λµ, µΥ⟩ = ⟨mΛµ + Λ,Υ⟩ − ⟨Λµ,mΥ⟩ = ⟨Λ,Υ⟩, (3.6)

where ⟨·, ·⟩ is the inner product on L2
w(K) defined above.

By the Lagrange identity, and by making use of (3.1)–(3.4), we get

⟨θ[Λµ],Υ⟩ − ⟨Λµ, θ[Υ]⟩

=[Λ1µ(x, µ)p(x)Υ′1(x, µ) − p(x)Λ′1µ(x, µ)Υ1(x, µ)]e−
a

+ [Λ2µ(x, µ)p(x)Υ′2(x, µ) − p(x)Λ′2µ(x, µ)Υ2(x, µ)]b
e+

= sin γ1(pΛ′1µ)(a) − cos γ1Λ1µ(a),

(3.7)

where Λ jµ(x, µ), Λ′jµ(x, µ), Υ jµ(x, µ), Υ′jµ(x, µ), Υµ(x, µ) are the respective partial derivatives of Λ j(x, µ),
Λ′j(x, µ), Υ j(x, µ), Υ′j(x, µ), Υ(x, µ) with respect to µ. By the definition of ω(µ) and (3.6) and (3.7),
we get

ω′(µ)|x=a =
dω1(µ)

dµ
|x=a = sin γ1(pΛ′1µ)(a) − cos γ1Λ1µ(a) = ⟨Λ,Υ⟩. (3.8)

Suppose that µ0 is an eigenvalue of the S-L problem given by (2.1)–(2.5). Then ω(µ0) = 0. Thus, there
exist constants c j , 0 ( j = 1, 2) such that

Λ j(x, µ0) = c jΥ j(x, µ0), j = 1, 2.

By (3.2) and (3.4), we obtain

Λ2(e+, µ0) = c1(−(µη2 − ξ2)Υ1(e−, µ0) − ((µη2 − ξ2)(µη1 − ξ1) − 1)(pΥ′1)(e−, µ0))
= c1Υ2(e+, µ0),

(pΛ′2)(e+, µ0) = c1(Υ1(e−, µ0) + (µη1 − ξ1)(pΥ′1)(e−, µ0)) = c1(pΥ′2)(e+, µ0).

Thus, c1 = c2 , 0 and Λ(x, µ) = c1Υ(x, µ). So, Eq (3.8) becomes

ω′(µ0) = c1⟨Υ,Υ⟩ = c1(
∫ e

a
|Υ1(x, µ0)|2wdx +

∫ b

e
|Υ2(x, µ0)|2wdx) , 0. (3.9)

Hence, the eigenvalue of the S-L problem given by (2.1)–(2.5); µ is simple.
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4. Green’s function

In this section, we show the Green’s function for the S-L problem given by (2.1)–(2.5).
Let µ ∈ Γ = {µ ∈ C|ω(µ) , 0}, and F = ( f (x), f1, f2)T ∈ H ; we define

κ(z) = −(pz′)′ + qz on K = [a, e) ∪ (e, b].

Next, we focus on the nonhomogeneous differential equation given by

κ(z) − µwz = f (x), x ∈ K, (4.1)

together with the BCs and transmission conditions given by (2.2)–(2.5); we can represent the general
solution of the differential equation κ(z) − µwz = f1(x) (x ∈ [a, e)) in the following form:

z1 = c21Υ1(x, µ) + c22Λ1(x, µ) +
Υ1(x, µ)
ω(µ)

∫ x

a
Λ1(ξ, µ) f1(ξ)dξ −

Λ1(x, µ)
ω(µ)

∫ x

a
Υ1(ξ, µ) f1(ξ)dξ, (4.2)

where f1 = f (x)|[a,e) and c21, c22 ∈ C. The general solution of the differential equation κ(z) − µwz =
f2(x), (x ∈ (e, b]) can be represented as follows:

z2 = d21Υ2(x, µ) + d22Λ2(x, µ) +
Υ2(x, µ)
ω(µ)

∫ x

e
Λ2(ξ, µ) f2(ξ)dξ −

Λ2(x, µ)
ω(µ)

∫ x

e
Υ2(ξ, µ) f2(ξ)dξ, (4.3)

where f2 = f (x)|(e,b] and d21, d22 ∈ C. Taking the transmission conditions given by (2.4) and (2.5) into
account along with (3.2) and (3.4), we obtain

z(e−) + (µη1 − ξ1)(pz′)(e−) + (pz′)(e+)

= − [c21(pΥ′2)(e) + c22(pΛ′2)(e) +
(pΥ′2)(e, µ)
ω(µ)

∫ e

a
Λ1(ξ, µ) f1(ξ)dξ

−
(pΛ′2)(e, µ)
ω(µ)

∫ e

a
Υ1(ξ, µ) f1(ξ)dξ] + d21(pΥ′2)(e) + d22(pΛ′2)(e) = 0,

(4.4)

(pz′)(e−) − z(e+) + (µη2 − ξ2)(pz′)(e+)
= − [d21(pΥ′1)(e) + d22(pΛ′1)(e)] + c21(pΥ′1)(e) + c22(pΛ′1)(e)

+
(pΥ′1)(e, µ)
ω(µ)

∫ e

a
Λ1(ξ, µ) f1(ξ)dξ −

(pΛ′1)(e, µ)
ω(µ)

∫ e

a
Υ1(ξ, µ) f1(ξ)dξ = 0.

(4.5)

From (4.4) and (4.5), we have

d21 = c21 +
1
ω(µ)

∫ e

a
Λ1(ξ, µ) f1(ξ)dξ, d22 = c22 −

1
ω(µ)

∫ e

a
Υ1(ξ, µ) f1(ξ)dξ. (4.6)

By the BC (2.2), we have

c21(cos γ1Υ1(a, µ) − sin γ1(pΥ′1)(a, µ)) + c22(cos γ1Λ1(a, µ) − sin γ1(pΛ′1)(a, µ)) = 0,

then we can obtain that c22 = 0.
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Similarly, by the BC (2.3), we have

cos γ2[d21Υ2(b) + d22Λ2(b) +
Υ2(b, µ)
ω(µ)

∫ b

e
Λ2(ξ, µ) f2(ξ)dξ

−
Λ2(b, µ)
ω(µ)

∫ b

e
Υ2(ξ, µ) f2(ξ)dξ] − sin γ2[d21(pΥ′2)(b) + d22(pΛ′2)(b)

+
(pΥ′2)(b, µ)
ω(µ)

∫ b

e
Λ2(ξ, µ) f2(ξ)dξ −

(pΛ′2)(b, µ)
ω(µ)

∫ b

e
Υ2(ξ, µ) f2(ξ)dξ] = 0.

Incorporating (4.6), we obtain that d21 = −
1
ω(µ)

∫ b

e
Λ2(ξ, µ) f2(ξ)dξ.

By (4.6), we get

c21 = −
1
ω(µ)

∫ e

a
Λ1(ξ, µ) f1(ξ)dξ −

1
ω(µ)

∫ b

e
Λ2(ξ, µ) f2(ξ)dξ, d22 = −

1
ω(µ)

∫ e

a
Υ1(ξ, µ) f1(ξ)dξ.

Applying (4.2) and (4.3), we obtain

z1(x, ξ) = −
Υ1(x, µ)
ω(µ)

∫ e

x
Λ1(ξ, µ) f1(ξ)dξ −

Λ1(x, µ)
ω(µ)

∫ x

a
Υ1(ξ, µ) f1(ξ)dξ

−
Υ1(x, µ)
ω(µ)

∫ b

e
Λ2(ξ, µ) f2(ξ)dξ, x ∈ [a, e),

z2(x, ξ) = −
Υ2(x, µ)
ω(µ)

∫ b

x
Λ2(ξ, µ) f2(ξ)dξ −

Λ2(x, µ)
ω(µ)

∫ x

e
Υ2(ξ, µ) f2(ξ)dξ

−
Λ2(x, µ)
ω(µ)

∫ e

a
Υ1(ξ, µ) f1(ξ)dξ, x ∈ (e, b].

Denoting the Green’s function of the problem as G(x, ξ, µ), then z(x, µ) can be represented as follows:

z(x, µ) =
∫ e

a
G(x, ξ, µ) f (ξ)dξ +

∫ b

e
G(x, ξ, µ) f (ξ)dξ,

where

G(x, ξ, µ) =



−
Υ1(x,µ)Λ1(ξ,µ)

ω(µ) , a < x < ξ < e,
−
Λ1(x,µ)Υ1(ξ,µ)

ω(µ) , a < ξ < x < e,
−
Υ1(x,µ)Λ2(ξ,µ)

ω(µ) , a < x < e, e < ξ < b,
−
Λ2(x,µ)Υ1(ξ,µ)

ω(µ) , a < ξ < e, e < x < b,
−
Υ2(x,µ)Λ2(ξ,µ)

ω(µ) , e < x < ξ < b,
−
Λ2(x,µ)Υ2(ξ,µ)

ω(µ) , e < ξ < x < b.

5. Continuous dependence of eigenvalues and eigenfunctions

In this section, the dependence of the eigenvalues on the given data will be presented; to this end let
us consider the following set

Ω =

{
ϑ = (

1
p
, q,w, γ1, γ2, ξ1, ξ2, η1, η2) : (2.6) − (2.7) hold

}
.
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The Banach space can then be introduced as follows:

B := L(K) ⊕ L(K) ⊕ L(K) ⊕ R6,

equipped with the following norm:

∥ ϑ ∥=

∫ e

a
(|

1
p
| + |q| + |w|)dx +

∫ b

e
(|

1
p
| + |q| + |w|)dx

+ |γ1| + |γ2| + |ξ1| + |ξ2| + |η1| + |η2|.

Next, the continuous dependence of the eigenvalues on the parameters can be discussed.

Theorem 2. Let ϑ̆ =
(

1
p̆ , q̆, w̆, γ̆1, γ̆2, ξ̆1, ξ̆2, η̆1, η̆2

)
∈ Ω. Suppose that µ = µ(ϑ) is an eigenvalue of the

S-L problem given by (2.1)–(2.5). Then µ is continuous for ϑ̆, that is, for any ε > 0 sufficiently small,
there exists a δ > 0 such that, for any ϑ = ( 1

p , q,w, γ1, γ2, ξ1, ξ2, η1, η2) ∈ Ω satisfying

∥ ϑ − ϑ̆ ∥=

∫ e

a
(|

1
p
−

1
p̆
| + |q − q̆| + |w − w̆|)dx +

∫ b

e
(|

1
p
−

1
p̆
| + |q − q̆| + |w − w̆|)dx

+ |γ1 − γ̆1| + |γ2 − γ̆2| + |ξ1 − ξ̆1| + |ξ2 − ξ̆2| + |η1 − η̆1| + |η2 − η̆2| < δ,

the eigenvalue µ(ϑ) of the S-L problem given by (2.1)–(2.5) satisfies

|µ(ϑ) − µ(ϑ̆)| < ε.

Proof. The proof is similar to that in [21], so we omit the details here.

Definition 1. An eigenvector Z = (z, z1, z2)T ∈ H of the S-L problem given by (2.1)–(2.5) is called a
normalized eigenvector if Z satisfies

∥ (z, z1, z2)T ∥2= ⟨(z, z1, z2)T , (z, z1, z2)T ⟩ =

∫ e

a
zz̄wdx +

∫ b

e
zz̄wdx + η1z1z1 + η2z2z2 = 1.

Then by the above definition a continuity property of the corresponding eigenvector can be expressed
as follows.

Theorem 3. Let µ(ϑ̆), ϑ̆ ∈ Ω be an eigenvalue of the S-L problem given by (2.1)–(2.5) and U =
(u, u1, u2)T (·, ϑ̆) ∈ H be a normalized eigenvector for µ(ϑ̆). Then there exist normalized eigenvectors
V = (v, v1, v2)T (·, ϑ) ∈ H of µ(ϑ) for ϑ ∈ Ω such that when ϑ→ ϑ̆ in Ω, it follows that

v(x)→ u(x), (pv′)(x)→ (pu′)(x), (5.1)

all uniformly on [a, e) ∪ (e, b], and v1 → u1, v2 → u2.

Proof. Assume that (z(x, ϑ̆), z1(ϑ̆), z2(ϑ̆))T is an eigenvector for µ(ϑ̆) with

∥ z(x, ϑ̆) ∥=
∫ e

a
z(x, ϑ̆)z̄(x, ϑ̆)w(x)dx +

∫ b

e
z(x, ϑ̆)z̄(x, ϑ̆)w(x)dx = 1.
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There exists µ(ϑ) such that
µ(ϑ)→ µ(ϑ̆), as ϑ→ ϑ̆.

Let the BC and the eigenparameter-dependent transmission condition matrix be denoted by

(
Aa Bb

Cµ Dµ

)
(ϑ) =


cos γ1 − sin γ1 0 0

0 0 cos γ2 − sin γ2

1 µ(ϑ)η1 − ξ1 0 1
0 1 −1 µ(ϑ)η2 − ξ2

 ,
then (

Aa Bb

Cµ Dµ

)
(ϑ)→

(
Aa Bb

Cµ Dµ

)
(ϑ̆), as ϑ→ ϑ̆.

It follows from Theorem 3.2 of [1] that there exist eigenfunctions denoted by z(x, ϑ) for µ(ϑ) such that
∥ z(x, ϑ) ∥= 1 and

z(x, ϑ)→ z(x, ϑ̆), (pz′)(x, ϑ)→ (pz′)(x, ϑ̆), as ϑ→ ϑ̆ in Ω, (5.2)

both uniformly on [a, e) ∪ (e, b], and

z1(ϑ)→ z1(ϑ̆), z2(ϑ)→ z2(ϑ̆), as ϑ→ ϑ̆ in Ω. (5.3)

Let

(v, v1, v2)T =
(z(x, ϑ), z1(ϑ), z2(ϑ))T

∥(z(x, ϑ), z1(ϑ), z2(ϑ))T ∥
, (u, u1, u2)T =

(z(x, ϑ̆), z1(ϑ̆), z2(ϑ̆))T

∥(z(x, ϑ̆), z1(ϑ̆), z2(ϑ̆))T ∥
,

pv′ =
(pz′)(x, ϑ)

∥(z(x, ϑ), z1(ϑ), z2(ϑ))T ∥
, pu′ =

(pz′)(x, ϑ̆)

∥(z(x, ϑ̆), z1(ϑ), z2(ϑ))T ∥
.

Then (5.1) holds by (5.2) and (5.3).

6. Differential equations for eigenvalues

The differentiability and the derivative formulas for the eigenvalues for each parameter in Theorem 2
are detailed in this section. The derivative formulas will be given in the form of a classical derivative or
Frechet derivative, respectively, for different parameters. For the definition of the Frechet derivative the
readers may refer to [1, 9].

Theorem 4. Let µ(ϑ), ϑ ∈ Ω be an eigenvalue of the S-L problem given by (2.1)–(2.5) and U =
(u, u1, u2)T be a normalized eigenvector for µ(ϑ); then, for each parameter in ϑ, µ is differentiable,
moreover, the derivative formulas for µ can be deduced as follows:

1) If we fix all parameters of ϑ except γ1, then one has

µ′(γ1) = − csc2 γ1|u(a)|2.

2) If we fix all parameters of ϑ except γ2, then one has

µ′(γ2) = csc2 γ2|u(b)|2.
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3) If we fix all parameters of ϑ except ξ1, then one has

µ′(ξ1) = |(pu′)(e−)|2.

4) If we fix all parameters of ϑ except ξ2, then one has

µ′(ξ2) = |(pu′)(e+)|2.

5) If we fix all parameters of ϑ except η1, then one has

µ′(η1) = −µ|(pu′)(e−)|2.

6) If we fix all parameters of ϑ except η2, then one has

µ′(η2) = −µ|(pu′)(e+)|2.

7) If we fix all parameters of ϑ except w, then one has

dµw(h) = −µ[
∫ e

a
h|u|2 +

∫ b

e
h|u|2], h ∈ L(J,R), h→ 0.

8) If we fix all parameters of ϑ except 1
p , then one has

dµ 1
p
(h) = −[

∫ e

a
h|pu′|2 +

∫ b

e
h|pu′|2], h ∈ L(J,R), h→ 0.

9) If we fix all parameters of ϑ except q, then one has

dµq(h) =
∫ e

a
h|u|2 +

∫ b

e
h|u|2, h ∈ L(J,R), h→ 0.

Proof. (a) With the exception of γ1, let us fix the parameters of ϑ, and let u = u(·, γ1) and v = u(·, γ1 +h).
Then

(µ(γ1 + h) − µ(γ1)) [
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx]

= − [u, v]e−
a − [u, v]b

e+

=[u, v](a) − [u, v](b) + [u, v](e+) − [u, v](e−),

(6.1)

(µ(γ1 + h) − µ(γ1)) η1u1v1

=η1u1µ(γ1 + h)v1 − η1µ(γ1)u1v1

=(pu′)(e−)(ξ1(pv̄′)(e−) − v̄(e−) − (pv̄′)(e+))
− (pv̄′)(e−)(ξ1(pu′)(e−) − u(e−) − (pu′)(e+))
=2[u, v](e−),

(6.2)
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(µ(γ1 + h) − µ(γ1)) η2u2v2

=η2u2µ(γ1 + h)v2 − η2µ(γ1)u2v2

=(pu′)(e+)(ξ2(pv̄′)(e+) + v̄(e+) − (pv̄′)(e−))
− (pv̄′)(e+)(ξ2(pu′)(e+) + u(e+) − (pu′)(e−))
= − [u, v](e+) − [u, v](e−).

(6.3)

By the BC (2.3), we obtain
[u, v](b) = 0.

Thus,

(µ(γ1 + h) − µ(γ1)) [
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx + η1u1v1 + η2u2v2]

=[u, v](a)
=[cot(γ1 + h) − cot γ1]u(a)v̄(a).

(6.4)

Then by dividing h and letting h→ 0, we arrive at

µ′(γ1) = − csc2 γ1|u(a)|2. (6.5)

Using a similar method, we can get 2).
(b) With the exception of ξ1, let us fix the parameters of ϑ, and let u = u(·, ξ1) and v = u(·, ξ1 + h).

Then

(µ(ξ1 + h) − µ(ξ1))[
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx] = −[u, v]e−

a − [u, v]b
e+, (6.6)

(µ(ξ1 + h) − µ(ξ1)) η1u1v1

=η1u1µ(ξ1 + h)v1 − η1µ(ξ1)u1v1

=(pu′)(e−)((ξ1 + h)(pv̄′)(e−) − v̄(e−) − (pv̄′)(e+))
− (pv̄′)(e−)(ξ1(pu′)(e−) − u(e−) − (pu′)(e+))
=2[u, v](e−) + h(pu′)(e−)(pv̄′)(e−),

(6.7)

and
(µ(ξ1 + h) − µ(ξ1)) η2u2v2 = −[u, v](e+) − [u, v](e−). (6.8)

By the BCs (2.3) and (2.4) we obtain

[u, v](a) = [u, v](b) = 0.

Thus,

(µ(ξ1 + h) − µ(ξ1))[
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx + η1u1v1 + η2u2v2]

= h(pu′)(e−)(pv̄′)(e−).
(6.9)

Then by dividing h and letting h→ 0, we arrive at

µ′(ξ1) = |(pu′)(e−)|2. (6.10)

Electronic Research Archive Volume 32, Issue 3, 1844–1863.



1859

This is the result for 3). And using a similar method, we can get 4).
(c) With the exception of η2, let us fix the parameters of ϑ, and let u = u(·, η2) and v = u(·, η2 + h).

Then

(µ(η2 + h) − µ(η2))[
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx] = −[u, v]e−

a − [u, v]b
e+, (6.11)

(µ(η2 + h) − µ(η2)) η1u1v1 = 2[u, v](e−), (6.12)

and

(µ(η2 + h) − µ(η2)) η2u2v2

=η2u2µ(η2 + h)v2 − η2µ(η2)u2v2

=(pu′)(e+)
η2

η2 + h
(ξ2(pv̄′)(e+) + v̄(e+) − (pv̄′)(e−))

− (pv̄′)(e+)(ξ2(pu′)(e+) + u(e+) − (pu′)(e−))

= − [u, v](e+) − [u, v](e−) −
h
η2 + h

(ξ2(pv̄′)(e+) + v̄(e+) − (pv̄′)(e−))(pu′)(e+).

(6.13)

Combining (6.11)–(6.13) and the BCs (2.3) and (2.4), we obtain

(µ(η2 + h) − µ(η2))[
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx + η1u1v1 + η2u2v2]

= −
h
η2 + h

(ξ2(pv̄′)(e+) + v̄(e+) − (pv̄′)(e−))(pu′)(e+).
(6.14)

Then by dividing h and letting h→ 0, we arrive at

µ′(η2) = −µ|(pu′)(e+)|2. (6.15)

Using a similar method, we can get that 5) holds.
(d) With the exception of w, let us fix the parameters of ϑ, and let u = u(·,w) and v = u(·,w + h).

Then
(µ(w + h) − µ(w)) η1u1v1 = 2[u, v](e−), (6.16)

(µ(w + h) − µ(w)) η2u2v2 = −[u, v](e+) − [u, v](e−), (6.17)

(µ(w + h) − µ(w)) [
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx]

=[u, v](a) − [u, v](b) + [u, v](e+) − [u, v](e−)

− (
∫ e

a
huµ(w + h)v̄dx +

∫ b

e
huµ(w + h)v̄dx).

(6.18)

Combining (6.16)–(6.18) and the BCs (2.3) and (2.4), we obtain

(µ(w + h) − µ(w))[
∫ e

a
uv̄wdx +

∫ b

e
uv̄wdx + η1u1v1 + η2u2v2]

= − (
∫ e

a
huµ(w + h)v̄dx +

∫ b

e
huµ(w + h)v̄dx).

(6.19)

Electronic Research Archive Volume 32, Issue 3, 1844–1863.



1860

Let h→ 0, we arrive at

dµw(h) = −µ[
∫ e

a
h|u|2 +

∫ b

e
h|u|2]. (6.20)

Using a similar method, we can get 8) and 9).

7. Conclusions

This paper represents the study of a new class of discontinuous S-L problems in which the spectral
parameter appears in the differential equation and the transmission conditions. The eigenvalue and
eigenfunction problems of the S-L problem have been converted into an eigenvalue problem for a specific
self-adjoint operator by building an appropriate Hilbert space and inner product, and the self-adjointness
of the operator in this case is provided. Next, some basic properties of eigenvalues were given via the
construction of the fundamental solutions. The Green’s function for this new class of S-L problem
has also been derived. Then, the continuity of the eigenvalues and eigenfunctions of the problem was
discussed. We obtained that the eigenvalues of the problem are continuously and smoothly dependent
on the parameters which define the problem. Finally, the differential equations for the eigenvalues
associated with the coefficient functions, the endpoints, the BCs, and transmission conditions were
obtained. The results obtained here are further generalizations of eigenvalue dependence of the boundary
value problems. As far as we know, there is no such eigenvalue dependence results for S-L problems
with eigenparameter-dependent transmission conditions.

The eigenvalue problems and eigenvalue dependence problems of differential operators play an
important role in mathematics and other fields of sciences. Such problems can be viewed as the
theoretical basis of the ordinary differential equations and enable effective numerical computation of
the eigenvalues, estimates of eigenvalues, and the inverse spectral theory of differential operators. For
example, the sharp estimates of eigenvalues for the corresponding differential operator may require the
use of our basic eigenvalue results here.
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