Research article Special Issues

Global existence and long-time behavior of solutions for fully nonlocal Boussinesq equations

  • Received: 26 May 2023 Revised: 12 July 2023 Accepted: 24 July 2023 Published: 31 July 2023
  • In this paper, we study initial boundary value problems for the following fully nonlocal Boussinesq equation

    $ _0^{C}D_{t}^{\beta}u+(-\Delta)^{\sigma}u+(-\Delta)^{\sigma}{_0^{C}D_{t}^{\beta}}u = -(-\Delta)^{\sigma}f(u) $

    with spectral fractional Laplacian operators and Caputo fractional derivatives. To our knowledge, there are few results on fully nonlocal Boussinesq equations. The main difficulty is that each term of this equation has nonlocal effect. First, we obtain explicit expressions and some rigorous estimates of the Green operators for the corresponding linear equation. Further, we get global existence and some decay estimates of weak solutions. Second, we establish new chain and Leibnitz rules concerning $ (-\Delta)^{\sigma} $. Based on these results and small initial conditions, we obtain global existence and long-time behavior of weak solutions under different dimensions $ N $ by Banach fixed point theorem.

    Citation: Xiaoju Zhang, Kai Zheng, Yao Lu, Huanhuan Ma. Global existence and long-time behavior of solutions for fully nonlocal Boussinesq equations[J]. Electronic Research Archive, 2023, 31(9): 5406-5424. doi: 10.3934/era.2023274

    Related Papers:

  • In this paper, we study initial boundary value problems for the following fully nonlocal Boussinesq equation

    $ _0^{C}D_{t}^{\beta}u+(-\Delta)^{\sigma}u+(-\Delta)^{\sigma}{_0^{C}D_{t}^{\beta}}u = -(-\Delta)^{\sigma}f(u) $

    with spectral fractional Laplacian operators and Caputo fractional derivatives. To our knowledge, there are few results on fully nonlocal Boussinesq equations. The main difficulty is that each term of this equation has nonlocal effect. First, we obtain explicit expressions and some rigorous estimates of the Green operators for the corresponding linear equation. Further, we get global existence and some decay estimates of weak solutions. Second, we establish new chain and Leibnitz rules concerning $ (-\Delta)^{\sigma} $. Based on these results and small initial conditions, we obtain global existence and long-time behavior of weak solutions under different dimensions $ N $ by Banach fixed point theorem.



    加载中


    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
    [2] R. Servadei, E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 831–855. https://doi.org/10.1017/S0308210512001783 doi: 10.1017/S0308210512001783
    [3] M. Bonforte, Y. Sire, J. L. Vázquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains, Discrete Contin. Dyn. Syst., 35 (2015), 5725–5767. https://doi.org/10.3934/dcds.2015.35.5725 doi: 10.3934/dcds.2015.35.5725
    [4] D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Nondiffusive transport in plasma turbulence: a fractional diffusion approach, Phys. Rev. Lett., 94 (2005), 065003. https://doi.org/10.1103/PHYSREVLETT.94.065003 doi: 10.1103/PHYSREVLETT.94.065003
    [5] D. del Castillo-Negrete, B. A. Carreras, V. E. Lynch, Fractional diffusion in plasma turbulance, Phys. Plasmas, 11 (2004), 3854–3864. https://doi.org/10.1063/1.1767097 doi: 10.1063/1.1767097
    [6] E. Nane, Fractional cauchy problems on bounded domains: survey of recent results, in Fractional Dynamics and Control. Springer, (2011), 185–198.
    [7] J. L. Vázquez, Recent progress in the theory of nonlinear diffusion with fractional laplacian operators, Discrete Contin. Dyn. Syst. Ser. S., 7 (2014), 857–885. https://doi.org/10.1016/S1007-5704(03)00049-2 doi: 10.1016/S1007-5704(03)00049-2
    [8] D. Boucenna, A. Boulfoul, A. Chidouh, A. B. Makhlouf, B. Tellab, Some results for initial value problem of nonlinear fractional equation in Sobolev space, J. Appl. Math. Comput., 67 (2021), 605–621. https://doi.org/10.1007/s12190-021-01500-5 doi: 10.1007/s12190-021-01500-5
    [9] Y. Q. Fu, X. J. Zhang, Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 1301–1322. https://doi.org/10.3934/dcdsb.2021091 doi: 10.3934/dcdsb.2021091
    [10] Y. Q. Fu, X. J. Zhang, Global existence, asymptotic behavior and regularity of solutions for time-space fractional Rosenau equations, Math. Meth. Appl. Sci., 45 (2022), 7992–8010. https://doi.org/10.1002/mma.7812 doi: 10.1002/mma.7812
    [11] Y. Q. Fu, X. J. Zhang, Global existence, local existence and blow-up of mild solutions for abstract time-space fractional diffusion equations, Topol. Methods Nonlinear Anal., 60 (2022), 415–440. https://doi.org/10.12775/TMNA.2021.015 doi: 10.12775/TMNA.2021.015
    [12] E. Otárola, A. J. Salgado, Regularity of solutions to space-time fractional wave equations: a PDE approach, Fract. Calc. Appl. Anal., 21 (2018), 1262–1293. https://doi.org/10.48550/arXiv.1711.06186 doi: 10.48550/arXiv.1711.06186
    [13] K. Sakamoto, M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426–447. https://doi.org/10.1016/j.jmaa.2011.04.058 doi: 10.1016/j.jmaa.2011.04.058
    [14] N. H. Tuan, A. Debbouche, T. B. Ngoc, Existence and regularity of final value problems for time fractional wave equations, Comput. Math. Appl., 78 (2019), 1396–1414. https://doi.org/10.1016/j.camwa.2018.11.036 doi: 10.1016/j.camwa.2018.11.036
    [15] Y. Zhou, J. W. He, Well-posedness and regularity for fractional damped wave equations, Monatsh. Math., 194 (2021), 425–458. https://doi.org/10.1007/s00605-020-01476-7 doi: 10.1007/s00605-020-01476-7
    [16] Y. Kian, M. Yamamoto, On existence and uniqueness of solutions for semilinear fractional wave equations, Fract. Calc. Appl. Anal., 20 (2017), 117–138. https://doi.org/10.1515/fca-2017-0006 doi: 10.1515/fca-2017-0006
    [17] J. Boussinesq, Theorie des ondes et de remous qui se propagent le long d'un canal rectangulaire horizontal en communiquantau liqude contene dans ce cannal des vitesses sensiblement pareilles de la surface au foud, J. Math. Pures Appl., 217 (1872), 55–108.
    [18] V. G. Makhankov, Dynamics of classical solitons (in non-integrable systems), Phys. Rep., 35 (1978), 1–128. https://doi.org/10.1016/0370-1573(78)90074-1 doi: 10.1016/0370-1573(78)90074-1
    [19] S. B. Wang, G. W. Chen, Small amplitude solutions of the generalized IMBq equation, J. Math. Anal. Appl., 264 (2002), 846–866. https://doi.org/10.1016/S0022-247X(02)00401-8 doi: 10.1016/S0022-247X(02)00401-8
    [20] S. B. Wang, G. W. Chen, The Cauchy problem for the generalized IMBq equation in $W^{s, p}(\mathbb{R}^N)$, J. Math. Anal. Appl., 266 (2002), 38–54. https://doi.org/10.1006/jmaa.2001.7670 doi: 10.1006/jmaa.2001.7670
    [21] R. Z. Xu, Y. C. Liu, B. W. Liu, The Cauchy problem for a class of the multidimensional Boussinesq-type equation, Nonlinear Anal., 74 (2011), 2425–2437. https://doi.org/10.1016/j.na.2010.11.045 doi: 10.1016/j.na.2010.11.045
    [22] S. B. Wang, H. Y. Xu, On the asymptotic behavior of solution for the generalized IBq equation with hydrodynamical damped term, J. Differ. Equations, 252 (2012), 4243–4258. https://doi.org/10.1016/j.jde.2011.12.016 doi: 10.1016/j.jde.2011.12.016
    [23] S. B. Wang, H. Y. Xu, On the asymptotic behavior of solution for the generalized IBq equation with Stokes damped term, Z. Angew. Math. Phys., 64 (2013), 719–731. https://doi.org/10.1007/s00033-012-0257-1 doi: 10.1007/s00033-012-0257-1
    [24] S. B. Wang, X. Su, Global existence and asymptotic behavior of solution for the sixth order Boussinesq equation with damped term, Nonlinear Anal., 120 (2015), 171–185. https://doi.org/10.1016/j.na.2015.03.005 doi: 10.1016/j.na.2015.03.005
    [25] Z. J. Yang, Longtime dynamics of the damped Boussinesq equation, J. Math. Anal. Appl., 399 (2013), 180–190. https://doi.org/https://doi.org/10.1016/j.jmaa.2012.09.042 doi: 10.1016/j.jmaa.2012.09.042
    [26] L. F. Li, Y. S. Yan, Y. Y. Xie, Rational solutions with non-zero offset parameters for an extended (3 + 1)-dimensional BKP-Boussinesq equation, Chaos Solitons Fractals, 160 (2022), 112250. https://doi.org/10.1016/j.chaos.2022.112250 doi: 10.1016/j.chaos.2022.112250
    [27] Y. Y. Xie, L. F. Li, S. H. Zhu, Dynamical behaviors of blowup solutions in trapped quantum gases: concentration phenomenon, J. Math. Anal. Appl., 468 (2018), 169–181. https://doi.org/10.1016/j.jmaa.2018.08.011 doi: 10.1016/j.jmaa.2018.08.011
    [28] Y. Y. Xie, L. Q. Mei, S. H. Zhu, L. F. Li, Sufficient conditions of collapse for dipolar Bose-Einstein condensate, ZAMM Z. Angew. Math. Mech., 99 (2019), e201700370. https://doi.org/10.1002/zamm.201700370 doi: 10.1002/zamm.201700370
    [29] J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equations, 263 (2017), 149–201. https://doi.org/10.1016/j.jde.2017.02.030 doi: 10.1016/j.jde.2017.02.030
    [30] L. Li, J. G. Liu, L. Z. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equations, 265 (2018), 1044–1096. https://doi.org/10.1016/j.jde.2018.03.025 doi: 10.1016/j.jde.2018.03.025
    [31] H. Brezis, Analyse Fonctionnelle, Masson, Paris, 1983.
    [32] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [33] K. X. Li, J. G. Peng, Laplace transform and fractional differential equations, Appl. Math. Lett., 24 (2011), 2019–2023. https://doi.org/10.1016/j.aml.2011.05.035 doi: 10.1016/j.aml.2011.05.035
    [34] Y. Cho, T. Ozawa, Remarks on modified improved Boussinesq equations in one space dimension, Proc. R. Soc. A, 462 (2006), 1949–1963. https://doi.org/10.1098/rspa.2006.1675 doi: 10.1098/rspa.2006.1675
    [35] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1089) PDF downloads(75) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog