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Abstract: In this paper, we study initial boundary value problems for the following fully nonlocal
Boussinesq equation

C
0Dβ

t u + (−∆)σu + (−∆)σC
0Dβ

t u = −(−∆)σ f (u)

with spectral fractional Laplacian operators and Caputo fractional derivatives. To our knowledge, there
are few results on fully nonlocal Boussinesq equations. The main difficulty is that each term of this
equation has nonlocal effect. First, we obtain explicit expressions and some rigorous estimates of the
Green operators for the corresponding linear equation. Further, we get global existence and some
decay estimates of weak solutions. Second, we establish new chain and Leibnitz rules concerning
(−∆)σ. Based on these results and small initial conditions, we obtain global existence and long-time
behavior of weak solutions under different dimensions N by Banach fixed point theorem.

Keywords: Boussinesq equation; fractional operator; global existence; long-time behavior

1. Introduction

Let QT = Ω × (0,T ), BT = ∂Ω × (0,T ), where Ω ⊂ RN is a smooth bounded domain and T > 0.
In this paper, we research initial boundary value problems for the following fully nonlocal Boussinesq
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equation 
C
0Dβ

t u + (−∆)σu + (−∆)σC
0Dβ

t u = −(−∆)σ f (u), in QT ,

u(x, t) = 0, on BT ,

u(x, 0) = φ(x), ut(x, 0) = ϕ(x), in Ω,

(1.1)

where 1 < β < 2, 0 < σ < 1 and N < 4σ. Moreover, f (u) is a given nonlinear function, and φ(x), ϕ(x)
are initial value data. The Caputo fractional operator C

0Dβ
t is defined by

C
0Dβ

t u(t) =
1

σ(2 − β)

∫ t

0

1
(t − s)β−1

d2

ds2 u(s)ds,

where σ is the gamma function. It is worth noting that C
0Dβ

t u may turn into the usual derivative utt

when β → 2, see [1] for details. The fractional Laplacian operator (−∆)σ can be defined via spectral
decomposition

(−∆)σu =

∞∑
k=1

µσk ukwk,

where µk and wk, k ∈ N are eigenpairs of the following eigenvalue problem−∆wk = µkwk, in Ω,

wk = 0, on ∂Ω,

and
vk =

∫
Ω

v(x)wkdx, with ‖wk‖L2(Ω) = 1.

Therefore, it’s called the spectral fraction Laplace operator, see [2, 3] for details. Equation (1.1) is
nonlocal both in space and time, so we call such a Boussinesq equation a fully nonlocal Boussinesq
equation.

Problem (1.1)’s widespread use as a model for anomalous diffusion in physical field serves as a
significant incentive for study. Time fractional derivatives are generally exploited to model the om-
nipresent memory effects such as anomalous diffusion, wave propagations and neuronal transmission
in Purkinje cells, etc. For example, in [4], the authors demonstrated how Caputo time fractional deriva-
tives can be used to analyze turbulent eddies’ trapping effects. In fact, β order time fractional derivatives
have been used for “superdiffusion”-in which particles spread quickly against the laws of Brownian
motion. Nevertheless, time fractional derivatives and “anomalous subdiffusion” are frequently linked
when β ∈ (0, 1), see [5–7]. Furthermore, space fractional derivatives can be used to describe nonlo-
cal effects, such as anomalous diffusion and Lévy processes. Recently, time or space fractional wave
equations have drawn a lot of interest, see [8–16] for examples.

In 1872, J. Boussinesq [17] presented the Boussinesq equation

utt − uxx + σuxxxx = (u2)xx,

which can illustrate how small amplitude long waves propagate on the surface of shallow water. The
improved Boussinesq equation (IBq equation) may be written as

utt − uxx − uxxtt = (u2)xx,
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which can describe the continuum limit of shallow water waves in a one-dimensional nonlinear lattice
and other modes supporting linear waves with a negative dispersion. They can also explain the lowest-
order nonlinear effects in the evolution of perturbations using a dispersion relation similar to that for
sound waves (in terms of wave amplitudes). In [18], it was indicated that the IBq equation

utt − ∆u − ∆utt = ∆(u2)

may be deduced from starting with the accurate hydrodynamical set of equations in plasma and modi-
fying the IBq equation in a manner similar to modifying the Korteweg-de Vries equation to derive

utt − ∆u − ∆utt = ∆(u3),

which is called IMBq (modified IBq) equation. During these years, the theory of Boussinesq equations
has been developed significantly, see [19–25]. In [19, 20], Wang and Chen studied Cauchy problems
for the following generalized Boussinesq equation

utt − ∆u − ∆utt = ∆ f (u). (1.2)

They discussed whether or not global solutions exist. Moreover, by Banach fixed point theorm, they
obtained that small-amplitude solutions exist globally. In [21], the authors researched Cauchy problems
for the following Boussinesq equation

utt − ∆u + ∆2u + ∆2utt = ∆ f (u).

Using the Banach fixed point theorem, they proved that the solution exists locally. Under different
dimensions, they obtained global existence of smooth solutions using potential well method. In addi-
tion, they acquired the blow-up of solutions. In general, in [23] and [24], the authors studied Cauchy
problems for the generalized Boussinesq equation with damping terms, respectively. Using the Banach
fixed point theorem, they constructed a class of time-weighted Sobolev spaces, and obtained global
existence and long-time behavior of small amplitude solutions. In [26], Li, Yan and Xie studied an
extended (3 + 1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation, and obtained a
family of rational solution through its bilinear form and symbolic computation. In addition, there are
many results on nonlocal nonlinear problems, see [27, 28] for examples.

Recently, fully nonlocal evolution equations have received a lot of attention. In [29], Kemppainen,
Siljander, Zacher studied classical solutions and large-time behavior for fully nonlocal diffusion equa-
tions. In [30], Li, Liu and Wang researched Cauchy problems for Keller-Segel type fully nonlocal
diffusion equation. Therefore, the study of fully nonlocal Boussinesq equations has certain theoretical
significance. Comparing the Eqs (1.1) and (1.2), we just replace utt with C

0Dβ
t u and −∆ with (−∆)σ,

as it comes to nonlocality and memory effect. In light of these works mentioned above, we aim to
investigate Cauchy problems for the fully nonlocal Boussinesq equation in (1.1) and generalize their
results in [19, 20] by Wang and Chen. Nevertheless, the spectral fractional Laplacian operator (−∆)σ

makes no sense in RN , because the Laplacian operator’s spectrum in RN is continuous purely. As a
result, we research the initial boundary value problem (1.1).

Nevertheless, as yet, there are few results on global existence and long-time behavior of solutions
for problem (1.1). In reality, the corresponding linear problem has not received much attention. The
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major difficulty is the nonlocality and nonlinearity of (−∆)σ f (u). In addition, from the memory effect
of ∂βt u, the definition of weak solutions is difficult to introduce and potential well method may be also
ineffective for fully nonlocal Boussinesq equations. Inspired by [16], we first study the corresponding
linear Boussinesq equation to obtain explicit expressions of Green operators. Further, we establish
some rigorous estimates of the Green operators to acquire global existence and decay properties of
weak solutions for linear problems. Second, we establish new chain and Leibniz rules concerning
the spectral fractional derivatives. Based on these given results, under different dimensions N and
small initial value condition, by Banach fixed point theorm, we obtain global existence and long-
time behavior of weak solutions for problem (1.1) in the time-weighted fractional Sobolev spaces.
Throughout this paper, we replace ‖ · ‖Hs(Ω) with ‖ · ‖s, and the notation C . D means that there is a
constant M > 0, such that C ≤ MD.

The following are major results of this manuscript.

Theorem 1.1. Suppose that

s =

σ, N < 2σ,
2σ, 2σ ≤ N < 4σ,

and
0 < α <

β − 1
β

, 2 < q <
1
αβ
.

If f ∈ Cl(R) and
| f (i)(u)| ≤ |u|q−i, i = 0, 1, ..., l ≤ q,

and φ, ϕ ∈ Hs(Ω) satisfy
‖φ‖s + ‖ϕ‖s ≤ ε,

then problem (1.1) has a unique global weak solution u ∈ C([0,T ];Hs(Ω)) satisfying ut ∈

C([0,T ];Hs(Ω)). Furthermore,

sup
0≤t≤T

tαβ‖u(t)‖s ≤ ζ, (1.3)

where ε, ζ > 0 are small enough such that ε + ζq ≤ ζ.

Theorem 1.2. Suppose that all assumptions in Theorem 1.1 hold, and

β − 1
β

< δ < 1, max{1,
δβ + 1 − β

αβ
} < q <

δ

α
.

Let u be the global weak solution of problem (1.1), then there holds

sup
0≤t≤T

tω‖ut(t)‖s ≤ ζ,

where
ω = β(δ − 1) + 1.

The paper is organized as follows. In Section 2, we introduce fractional Sobolev space briefly, and
give several properties of Mittag-Leffler functions. In Section 3, we study global existence and decay
estimates of weak solutions for the corresponding linear Boussinesq equation. In Section 4, for small
initial values condition, we establish global existence and long-time behavior of weak solutions for
problem (1.1) under different dimensions N.
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2. Preliminaries

For simplicity, we use the notation below. Let Lp(Ω), 1 ≤ p ≤ ∞, be Lebesgue spaces endowed
with the norm ‖ · ‖p. Specially, we replace ‖ · ‖2 with ‖ · ‖. Let Hσ(Ω), σ > 0, be the usual Sobolev
space. Moreover, we introduce the fractional Sobolev space by eigenpairs mentioned above

Hσ(Ω) = {u|u ∈ L2(Ω), ‖u‖2Hσ(Ω) =

∞∑
k=1

µσk |(u,wk)|2 < ∞},

where (·, ·) represents the inner product in L2(Ω). Obviously, (Hσ(Ω), ‖ · ‖Hσ(Ω)) is a Hilbert space, and
satisfies Hσ(Ω) ⊂ Hσ(Ω). Particularly, H1(Ω) = H1

0(Ω). Let H−σ(Ω) denote the dual space of Hσ(Ω).
Since Hσ(Ω) ⊂ L2(Ω), we have Hσ(Ω) ⊂ L2(Ω) ⊂ H−σ(Ω).

It is worth noting that H−σ(Ω) is a Hilbert space endowed with the norm

‖u‖2H−σ(Ω) =

∞∑
k=1

µ−σk |〈u,wk〉|
2,

where 〈·, ·〉 represents the dual product between H−σ(Ω) and Hσ(Ω). Moreover, if v ∈ L2(Ω) and
w ∈ Hσ(Ω), we have

〈v,w〉 = (v,w).

We may refer to [13, 16, 31] for details on Hσ(Ω).
The Mittag-Leffler function Eα,β(z) may play an crucial role on existence and decay estimates of

solutions. Next, we give the definition and several important properties of Eα,β(z). For z ∈ C, the
Mittag-Leffler function can be defined by

E$,ν(z) =

∞∑
k=0

1
σ($k + ν)

zk

where $ > 0, ν ∈ R are arbitrary constants, see [1] for details.

Lemma 2.1 ( [14, 32]). If 1 < $ < 2 and ν ∈ R, then for all t ≥ 0,

|E$,ν(−t)| ≤
C$,ν

1 + t
,

where C$,ν > 0 depends only on $, ν.

Lemma 2.2 ( [13, 14]). If 1 < $ < 2 and η > 0, then there hold

∂tE$,1(−ηt$) = −ηt$−1E$,$(−ηt$),

and
∂t(t$−1E$,$(−ηt$)) = t$−2E$,$−1(−ηt$).

Lemma 2.3 ( [13, 14]). If 1 < $ < 2 and η > 0, then there hold

∂$t E$,1(−ηt$) = −ηE$,1(−ηt$),

and
∂$t (t$−1E$,$(−ηt$)) = −ηt$−1E$,$(−ηt$).

Electronic Research Archive Volume 31, Issue 9, 5406–5424.



5411

3. Linear estimates

In this section, we obtain explicit expressions and some rigorous estimates of the Green operators
for problem (1.1). First, we study the corresponding linear problem

C
0Dβ

t u + (−∆)σu + (−∆)σC
0Dβ

t u = −(−∆)σh(t, x), in QT ,

u(x, t) = 0, on BT ,

u(x, 0) = φ(x), ut(x, 0) = ϕ(x), in Ω,

(3.1)

where the function h(t, x) is given. Inspired by [12,13,16], we try to find the solution of problem (3.1)
as follows

u(x, t) =

∞∑
k=1

uk(t)wk(x). (3.2)

Therefore, it can be inferred thatC
0Dβ

t uk + µσk uk + µσk
C
0Dβ

t uk = −µσk hk,

uk(0) = φk, ∂tuk(0) = ϕk,
(3.3)

where hk = (h,wk), φk = (φ,wk) and ϕk = (ϕ,wk). By Laplace transforms, we have

ξβũk − ξ
β−1φk − ξ

β−2ϕk + µσk (ξβũk − ξ
β−1φk − ξ

β−2ϕk) + µσk ũk = −µσk h̃k,

where
ũk = L(uk(t)) =

∫ ∞

0
e−ξtuk(t)dt.

Then, we get
ũk = ξβ−1φk(ξβ + ηk)−1 + ξβ−2ϕk(ξβ + ηk)−1 − ηkh̃k(ξβ + ηk)−1,

where

ηk =
µσk

1 + µσk

satisfies
µσ1

1 + µσ1
≤ ηk ≤ 1.

Using the inverse Laplace transform, it is derived from Lemma 2.1 in [33] that

uk(t) = Eβ,1(−ηktβ)φk + tEβ,2(−ηktβ)ϕk

− ηk

∫ t

0
(t − τ)β−1Eβ,β(−ηk(t − τ)β)hk(τ)dτ. (3.4)

In terms of (3.4), if (3.2) converges, then we may formally obtain the following weak solution

u(t, x) = Rβ
1(t)φ(x) + Rβ

2(t)ϕ(x) +

∫ t

0
Rβ

3(t − τ)h(τ, x)dτ, (3.5)
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where the Green operators are

Rβ
1(t)v =

∞∑
k=1

Eβ,1(−ηktβ)vkwk,

Rβ
2(t)v = t

∞∑
k=1

Eβ,2(−ηktβ)vkwk,

Rβ
3(t)v = −tβ−1

∞∑
k=1

ηkEβ,β(−ηktβ)vkwk.

Then, we get from Lemma 2.2

∂tR
β
1(t)v = −tβ−1

∞∑
k=1

ηkEβ,β(−ηktβ)vkwk,

∂tR
β
2(t)v =

∞∑
k=1

Eβ,1(−ηktβ)vkwk,

∂tR
β
3(t)v = −tβ−2

∞∑
k=1

ηkEβ,β−1(−ηktβ)vkwk.

Definition 3.1. We say that u is a weak solution of problem (3.1) if u ∈ L∞(0,T ; L2(Ω)), ∂tu ∈
L∞(0,T ; L2(Ω)), ∂βt u ∈ L2((0, t) × Ω), u(0) = φ, ∂tu(0) = ϕ and (3.5) holds. Moreover, if T > 0
can be chosen as any positive number, u is called a global weak solution for problem (3.1).

We can get the following estimations on the Green operators immediately from Lemmas 2.1 and
2.2.

Lemma 3.2. If v ∈ L2(Ω), then we get

‖Rβ
1(t)v‖ . ‖v‖, ‖∂tR

β
1(t)v‖ . tβ−1‖v‖,

‖Rβ
2(t)v‖ . t1− β2 ‖v‖, ‖∂tR

β
2(t)v‖ . ‖v‖,

‖Rβ
3(t)v‖ . t

β
2−1‖v‖, ‖∂tR

β
3(t)v‖ . tβ−2‖v‖.

Further, if v ∈ Hs(Ω), then we have

‖Rβ
1(t)v‖s . ‖v‖s, ‖∂tR

β
1(t)v‖s . tβ−1‖v‖s,

‖Rβ
2(t)v‖s . t1− β2 ‖v‖s, ‖∂tR

β
2(t)v‖s . ‖v‖s,

‖Rβ
3(t)v‖s . t

β
2−1‖v‖s, ‖∂tR

β
3(t)v‖s . tβ−2‖v‖s.

Proof. We obtain directly from Lemma 2.1

‖Rβ
1(t)v‖2 =

∞∑
k=1

[Eβ,1(−ηktβ)vk]2 .
∞∑

k=1

v2
k = ‖v‖2,

‖∂tR
β
1(t)v‖ = tβ−1(

∞∑
k=1

η2
k[Eβ,β(−ηktβ)vk]2)

1
2 . tβ−1‖v‖,
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‖Rβ
2(t)v‖ . t(

∞∑
k=1

tβ

(1 + ηktβ)2 t−βv2
k)

1
2 . t1− β2 ‖v‖,

‖∂tR
β
2(t)v‖ = (

∞∑
k=1

[Eβ,1(−ηktβ)vk]2)
1
2 . ‖v‖,

and

‖Rβ
3(t)v‖ = tβ−1(

∞∑
k=1

η2
k[Eβ,β(−ηktβ)vk]2)

1
2

. tβ−1(
∞∑

k=1

µ2σ
k

(1 + µσk )2

tβ

(1 + ηktβ)2 t−βv2
k)

1
2

. t
β
2−1‖v‖,

‖∂tR
β
3(t)v‖ = tβ−2(

∞∑
k=1

η2
k[Eβ,β−1(−ηktβ)vk]2)

1
2

. tβ−2(
∞∑

k=1

µ2σ
k

(1 + µσk )2

1
(1 + ηktβ)2 v2

k)
1
2

. tβ−2‖v‖.

Thus, Rβ
1(t)v is uniformly convergent with regard to t, and ∂tR

β
1(t)v is convergent in L2(Ω). Therefore,

∂tR
β
1(t)v exists. In a similar way, other conclusions of Lemma 3.2 are easily obtained from Lemma

2.1.

Next, more rigorous estimations are acquired for the Green operators.

Lemma 3.3. Suppose that

0 < α <
β − 1
β

, 1 < q < 1 +
1
α
.

If v ∈ Hs(Ω), then we get

‖Rβ
1(t)v‖s . t−αβ‖v‖s, ‖R

β
2(t)v‖s . t−αβ‖v‖s,

‖Rβ
3(t)v‖s . tαβ(q−1)−1‖v‖s.

Proof. By Young inequality, we obtain from Lemma 2.1

‖Rβ
1(t)v‖s = (

∞∑
k=1

µs
k[Eβ,1(−ηktβ)vk]2)

1
2 . t−αβ(

∞∑
k=1

µs
k

t2αβ

(1 + ηktβ)2 v2
k)

1
2

. t−αβ‖v‖s,

and

‖Rβ
2(t)v‖s = t(

∞∑
k=1

µs
k[Eβ,2(−ηktβ)vk]2)

1
2 . t(

∞∑
k=1

µs
k

t2αβ+2

(1 + ηktβ)2 t−2αβ−2v2
k)

1
2
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. t−αβ‖v‖s,

and

‖Rβ
3(t)v‖s = tβ−1(

∞∑
k=1

µs
k[Eβ,β(−ηktβ)vk]2)

1
2

. tβ−1(
∞∑

k=1

µs
k

t2β−2αβ(q−1)

(1 + ηktβ)2 t−2β+2αβ(q−1)v2
k)

1
2

. tαβ(q−1)−1‖v‖s.

Lemma 3.4. Suppose that

β − 1
β

< δ < 1, max{1,
δβ + 1 − β

αβ
} < q <

δ

α
,

where α is already determined in Lemma 3.3. If v ∈ Hs(Ω), then we get

‖∂tR
β
1(t)v‖s . tβ(1−δ)−1‖v‖s, ‖∂tR

β
2(t)v‖s . tβ(1−δ)−1‖v‖s,

‖∂tR
β
3(t)v‖s . tβ(1−δ+αq)−2‖v‖s.

Proof. By Young inequality, we obtain from Lemma 2.1

‖∂tR
β
1(t)v‖s = tβ−1(

∞∑
k=1

µs
k[Eβ,β(−ηktβ)vk]2)

1
2

. tβ−1(
∞∑

k=1

µs
k

t2βδ

(1 + ηktβ)2 t−2βδv2
k)

1
2

. tβ(1−δ)−1‖v‖s,

and

‖∂tR
β
2(t)v‖s = (

∞∑
k=1

µs
k[Eβ,1(−ηktβ)vk]2)

1
2

. tβ(1−δ)−1(
∞∑

k=1

µs
k

t2βδ+2−2β

(1 + ηktβ)2 v2
k)

1
2

. tβ(1−δ)−1‖v‖s,

and

‖Rβ
3(t)v‖s = tβ−2(

∞∑
k=1

µs
k[Eβ,β−1(−ηktβ)vk]2)

1
2

. tβ−2(
∞∑

k=1

µs
k

t2β(δ−αq)

(1 + ηktβ)2 t−2β(δ−αq)v2
k)

1
2

. tβ(1−δ+αq)−2‖v‖s.
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Proposition 3.5.

(i) If h ∈ L∞(0,T ; L2(Ω)), φ ∈ L2(Ω) and ϕ ∈ L2(Ω), then problem (3.1) has a unique global weak
solution u ∈ C([0,T ]; L2(Ω)) satisfying ut ∈ C([0,T ]; L2(Ω)). Moreover, for all t > 0, there hold

‖u(t)‖ . ‖φ‖ + t1− β2 ‖ϕ‖ + t
β−1

2 ‖h‖L2((0,t)×Ω),

‖ut(t)‖ . tβ−1‖φ‖ + ‖ϕ‖ + tβ−1‖h‖L∞(0,t;L2(Ω)),

and
‖∂

β
t u‖L2((0,t)×Ω) . t

1
2 ‖φ‖ + t

3−β
2 ‖ϕ‖ + (t

β
2 + 1)‖h‖L2((0,t)×Ω).

(ii) If h ∈ L∞(0,T ;Hs(Ω)), φ ∈ Hs(Ω), and ϕ ∈ Hs(Ω), then problem (3.1) has a unique global weak
solution u ∈ C([0,T ];Hs(Ω)) satisfying ut ∈ C([0,T ];Hs(Ω)). Moreover, for all t > 0, there hold

‖u(t)‖s . ‖φ‖s + t1− β2 ‖ϕ‖s + t
β−1

2 ‖h‖L2(0,t;Hs(Ω)),

and
‖ut(t)‖s . tβ−1‖φ‖s + ‖ϕ‖s + tβ−1‖h‖L∞(0,t;Hs(Ω)).

Proof. First, we prove Proposition 3.5.(i). By Hölder inequality, we get from Lemma 3.2

‖u(t)‖ ≤ ‖Rβ
1(t)φ‖ + ‖Rβ

2(t)ϕ‖ +

∫ t

0
‖Rβ

3(t − τ)h(τ, ·)‖dτ

. ‖φ‖ + t1− β2 ‖ϕ‖ +

∫ t

0
(t − τ)

β
2−1‖h(τ, ·)‖dτ

. ‖φ‖ + t1− β2 ‖ϕ‖ + (
∫ t

0
(t − τ)β−2dτ)

1
2 (
∫ t

0
‖h(τ, ·)‖2dτ)

1
2

. ‖φ‖ + t1− β2 ‖ϕ‖ + t
β−1

2 ‖h‖L2((0,t)×Ω).

Therefore, we have u ∈ C([0,T ]; L2(Ω)). Furthermore, we obtain that u is continuous absolutely with
regard to t from (3.5). Then, it is deduced from Lemma 3.2 that ∂tu exists and

ut(t, x) = ∂tR
β
1(t)φ + ∂tR

β
2(t)ϕ +

∫ t

0
∂tR

β
3(t − τ)h(τ, x)dτ.

Furthermore, we get from Lemma 2.3

∂
β
t uk(t) = − ηkEβ,1(−ηktβ)φk − tηkEβ,2(−ηktβ)ϕk

+ η2
k

∫ t

0
(t − τ)β−1Eβ,β(−ηk(t − τ)β)hk(τ)dτ − ηkhk(t).

Hence, by Young inequality, we have from Lemma 2.1

‖∂
β
t u‖L2((0,t)×Ω) . t

1
2 ‖φ‖ + t

3−β
2 ‖ϕ‖ + (t

β
2 + 1)‖h‖L2((0,t)×Ω).
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Further, we also obtain

‖ut(t)‖ ≤ ‖∂tR
β
1(t)φ‖ + ‖∂tR

β
2(t)ϕ‖ +

∫ t

0
‖∂tR

β
3(t − τ)h(τ, ·)‖dτ

. tβ−1‖φ‖ + ‖ϕ‖ +

∫ t

0
(t − τ)β−2‖h(τ, ·)‖dτ

. tβ−1‖φ‖ + ‖ϕ‖ + tβ−1‖h‖L∞(0,t;L2(Ω)).

Therefore, u ∈ C([0,T ]; L2(Ω)) and ut ∈ C([0,T ]; L2(Ω)).
Next, we prove Proposition 3.5.(ii). By Hölder inequality, we obtain from Lemma 3.2

‖u(t)‖s ≤ ‖R
β
1(t)φ‖s + ‖Rβ

2(t)ϕ‖s +

∫ t

0
‖Rβ

3(t − τ)h(τ, ·)‖sdτ

. ‖φ‖s + t1− β2 ‖ϕ‖s +

∫ t

0
(t − τ)

β
2−1‖h(τ, ·)‖sdτ

. ‖φ‖s + t1− β2 ‖ϕ‖s + (
∫ t

0
(t − τ)β−2dτ)

1
2 (
∫ t

0
‖h(τ, ·)‖2sdτ)

1
2

. ‖φ‖s + t1− β2 ‖ϕ‖s + t
β−1

2 ‖h‖L2(0,t;Hs(Ω)),

and

‖ut(t)‖s ≤ ‖∂tR
β
1(t)φ‖s + ‖∂tR

β
2(t)ϕ‖s +

∫ t

0
‖∂tR

β
3(t − τ)h(τ, ·)‖sdτ

. tβ−1‖φ‖s + ‖ϕ‖s +

∫ t

0
(t − τ)β−2‖h(τ, ·)‖sdτ.

In the inequality above, we represent the final term by

I = Z ∗ ‖h‖s :=
∫ t

0
(t − τ)β−2‖h(τ, ·)‖sdτ.

Therefore,

‖I‖L2(0,t) = ‖Z ∗ ‖h‖s‖L2(0,t) ≤ ‖Z‖L1(0,t)‖‖h‖s‖L2(0,t)

≤ tβ−1‖h‖L2(0,t;Hs(Ω)).

Then,
‖ut‖L2(0,t;Hs(Ω)) . tβ−

1
2 ‖φ‖s + t

1
2 ‖ϕ‖s + tβ−1‖h‖L2(0,t;Hs(Ω)).

Furthermore, we also have

‖ut‖s . tβ−1‖φ‖s + ‖ϕ‖s +

∫ t

0
(t − τ)β−2‖h(τ, ·)‖sdτ

. tβ−1‖φ‖s + ‖ϕ‖s + tβ−1‖h‖L∞(0,t;Hs(Ω)).

Therefore, u ∈ C([0,T ];Hs(Ω)) and ut ∈ C([0,T ];Hs(Ω)).
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Proposition 3.6. Suppose that h ∈ L∞(0,T ;Hs(Ω)), φ ∈ Hs(Ω), and ϕ ∈ Hs(Ω). If u is a global weak
solution of problem (3.1), then we have

‖u(t)‖s . t−αβ(‖φ‖s + ‖ϕ‖s) +

∫ t

0
(t − τ)αβ(q−1)−1‖h(τ, ·)‖sdτ,

and

‖ut(t)‖s . tβ(1−δ)−1(‖φ‖s + ‖ϕ‖s) +

∫ t

0
(t − τ)β(1−δ+αq)−2‖h(τ, ·)‖sdτ.

Remark 3.7. It is simple to observe that Proposition 3.6 is more rigorous than Proposition 3.5, which
initially appears to be weak, when it comes to estimates of weak solutions. Proposition 3.6 cannot be
ignored because Proposition 3.5 can be used to establish local existence theorems to problem (1.1),
but Proposition 3.6 cannot.

4. Proofs of main results

In this section, by constructing time-weighted fractional Sobolev spaces and Banach fixed point
theorem, we get global existence and long-time behavior of weak solutions for problem (1.1). Now,
we provide the definition of weak solutions for problem (1.1).

Definition 4.1. We say that u is a weak solution of problem (1.1) if u ∈ C([0,T ];Hs(Ω)), ut ∈

C([0,T ];Hs(Ω)), u(0) = φ, ∂tu(0) = ϕ, and there holds

u(t, x) = Rβ
1(t)φ(x) + Rβ

2(t)ϕ(x) +

∫ t

0
Rβ

3(t − τ) f (u(τ, x))dτ.

Moreover, if T > 0 can be chosen as any positive number, u is called a global weak solution for problem
(1.1).

First, we need the following lemmas to establish chain and Leibnitz rules concerning (−∆)σ.

Lemma 4.2 ( [34]). Let Ds = (−∆)
s
2 , for any s ≥ 0, then we have

‖Ds f (u)‖Lr(RN ) . ‖u‖
q−1
L(q−1)r1 (RN )

‖Dsu‖Lr2 (RN ),

where
r−1 = r−1

1 + r−1
2 , r1 ∈ (1,∞], r2 ∈ (1,∞),

and
‖Ds(vw)‖Lr(RN ) . ‖Dsv‖Lr1 (RN )‖w‖Lq2 (RN ) + ‖v‖Lq1 (RN )‖Dsw‖Lr2 (RN ),

where
1
r

=
1
r1

+
1
q2

=
1
r2

+
1
q1
, ri ∈ (1,∞), qi ∈ (1,∞], i = 1, 2.

Since Ω is regular enough, it has the so-called extension property, namely: For any s ∈ (0, 1), there
exists an extension ŭ of u ∈ H s(Ω) such that ŭ ∈ H s(RN) and ŭ|Ω = u where

H s(RN) = {u ∈ L2(RN) :
∫
RN
|ξ|2s|F u(ξ)|2dξ < ∞}.
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Moreover, ‖ŭ‖Hs(RN ) ≤ C‖u‖Hs(Ω). In particular, taking such extension is the trivial one, namely the
extension by zero outside Ω, there holds

‖ŭ‖Hs(RN ) � ‖u‖Hs(Ω),

where
‖ŭ‖Hs(RN ) := ‖Dsŭ‖L2(RN ),

and A � B represents that there are two constants c1, c2 > 0 satisfying c1A ≤ B ≤ c2A, see [3, 35] for
details. Moreover, from [3], the space Hs(Ω) is redefined by

Hs(Ω) = {u ∈ H s(RN) : supp(u) ⊂ Ω̄},

and these two norms ‖ · ‖Hs(Ω) and ‖ · ‖Hs(Ω) on Hs(Ω) are equivalent. Therefore, we conclude that

‖ŭ‖Hs(RN ) � ‖u‖Hs(Ω).

Further, let s ∈ [1, 2) and u ∈ Hs(Ω). Taking s = 1 + δ, we derive

‖u‖Hs(Ω) = ‖∇u‖Hδ(Ω) � ‖∇u‖Hδ(Ω) � ‖∇ŭ‖Hδ(RN ).

Moreover, we get
‖∇ŭ‖Hδ(RN ) = ‖Dδ∇ŭ‖L2(RN ) = ‖Dsŭ‖L2(RN ) = ‖ŭ‖Hs(RN ).

Therefore, we obtain
‖ŭ‖Hs(RN ) � ‖u‖Hs(Ω).

Therefore, we obtain the following chain and Leibniz rules concerning the spectral fractional deriva-
tives, which plays an fundamental role on existence of weak solutions.

Lemma 4.3. Suppose that s ∈ (0, 2) and u, v ∈ Hs(Ω), then there hold

‖ f (u)‖s . ‖u‖
q−1
∞ ‖u‖s,

‖uv‖s . ‖u‖s‖v‖∞ + ‖u‖∞‖v‖s.

Proof. By Lemma 4.2, we have

‖ f (u)‖s . ‖ f (ŭ)‖Hs(RN ) = ‖Ds f (ŭ)‖L2(RN )

. ‖ŭ‖q−1
L∞(RN )‖D

sŭ‖L2(RN )

= ‖u‖q−1
L∞(Ω)‖ŭ‖Hs(RN ) . ‖u‖

q−1
∞ ‖u‖s,

and

‖uv‖s . ‖ŭv̆‖Hs(RN ) =‖Ds(ŭv̆)‖L2(RN )

.‖Dsŭ‖L2(RN )‖v̆‖L∞(RN ) + ‖ŭ‖L∞(RN )‖Dsv̆‖L2(RN )

=‖ŭ‖Hs(RN )‖v̆‖L∞(RN ) + ‖ŭ‖L∞(RN )‖v̆‖Hs(RN )

.‖u‖Hs(Ω)‖v‖L∞(Ω) + ‖u‖L∞(Ω)‖v‖Hs(Ω)

=‖u‖s‖v‖∞ + ‖u‖∞‖v‖s.
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Lemma 4.4. Suppose that s ∈ (0, 2) and u, v ∈ Hs(Ω), then there holds

‖ f (u) − f (v)‖s . ‖w‖
q−2
∞ ‖w‖s‖u − v‖∞ + ‖w‖q−1

∞ ‖u − v‖s,

where w = δu + (1 − δ)v for some δ ∈ (0, 1).

Proof. By Lemma 4.3, we have

‖ f (u) − f (v)‖s = ‖ f ′(w)(u − v)‖s
.‖ f ′(w)‖s‖u − v‖∞ + ‖ f ′(w)‖∞‖u − v‖s

.‖w‖q−2
∞ ‖w‖s‖u − v‖∞ + ‖w‖q−1

∞ ‖u − v‖s.

Now, we prove main results of this manuscript.

Proof of Theorem 1.1. Define

V = {v|v ∈ L∞(0,T ;Hs(Ω)), ‖v‖V ≤ ζ},

where
‖v‖V = sup

0<t≤T
tαβ‖v(t)‖s,

and ρ(v,w) = ‖v − w‖V for any v,w ∈ V . Consequently, it is evident that the metric space (V, ρ) is
complete. Moreover, The operator P on V is defined as

P(u(t)) = Rβ
1(t)φ + Rβ

2(t)ϕ +

∫ t

0
Rβ

3(t − τ) f (u(τ))dτ.

By Sobolev embedding theorem, it is easy to get P(u) ∈ L∞(0,T ;Hs(Ω)) from Lemma 3.2. For any
u ∈ V , using Proposition 3.6, Lemma 4.3 and Sobolev embedding theorem, we obtain

‖P(u(t))‖s . t−αβ‖φ‖s + t−αβ‖ϕ‖s +

∫ t

0
(t − τ)αβ(q−1)−1‖ f (u(τ))‖sdτ

. t−αβ‖φ‖s + t−αβ‖ϕ‖s +

∫ t

0
(t − τ)αβ(q−1)−1‖u(τ)‖q−1

∞ ‖u(τ)‖sdτ

. t−αβ‖φ‖s + t−αβ‖ϕ‖s + ζq
∫ t

0
(t − τ)αβ(q−1)−1τ−αβqdτ

. t−αβ(‖φ‖s + ‖ϕ‖s + ζq).

Hence, when ε and ζ are small enough, we get

‖P(u)‖V . ε + ζq ≤ ζ.

Thus, we acquire P(u) ∈ V . Next, we prove that P : V → V is contractive. Taking any u, v ∈ V , by
Sobolev embedding theorem, we obtain from Lemma 4.4

‖P(u(t)) − P(v(t))‖s ≤
∫ t

0
‖Rβ

3(t − τ)( f (u(τ)) − f (v(τ)))‖sdτ
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.

∫ t

0
(t − τ)αβ(q−1)−1‖(1 − ϑ)u + ϑv)‖q−1

s ‖u(τ) − v(τ)‖sdτ

. ζq−1‖u − v‖V

∫ t

0
(t − τ)αβ(q−1)−1τ−αβqdτ

. t−αβζq−1ρ(u, v),

for some ϑ ∈ (0, 1). Then,
ρ(P(u), P(v)) . ζq−1ρ(u, v).

Taking ζ small enough, we conclude that P is contractive. Using Banach fixed point theorem, we derive
that P has a unique fixed point u ∈ V .

Remarkably, we have get the solution u ∈ C((0,T ];Hs(Ω)) and

sup
0<t≤T

tαβ‖u(t)‖s ≤ ζ. (4.1)

from the above proof. Next, we show

u ∈ C([0,T ];Hs(Ω)).

In reality, we just have to verify that there exist T0 > 0 small enough such that problem (1.1) admits
a weak solution in

X = {u|u ∈ C([0,T0];Hs(Ω)), ‖u‖X ≤ ζ},

where
‖u‖X = max

t∈[0,T0]
‖u(t)‖s.

Using Lemma 3.2 and Sobolev embedding theorem, we get P(u) ∈ C([0,T ];Hs(Ω)). For any u ∈ X,
using Lemma 3.2, Lemma 4.3 and Sobolev embedding theorem, we acquire

‖P(u(t))‖s . ‖φ‖s + t1− β2 ‖ϕ‖s +

∫ t

0
(t − τ)

β
2−1‖ f (u(τ))‖sdτ

. ‖φ‖s + t1− β2 ‖ϕ‖s +

∫ t

0
(t − τ)

β
2−1‖u(τ)‖q−1

∞ ‖u(τ)‖sdτ

. ε + T
β
2

0 2qζq

≤ ζ,

where T0 < 1 is small enough such that

ε + T
β
2

0 2qζq ≤ ζ.

Then, when ε and ζ are small enough, we derive

‖P(u)‖X ≤ 2ζ.

Thus, we get P(u) ∈ X. Next, we verify that P : X → X is contractive. Taking any u, v ∈ X, using
Lemma 3.2, Lemma 4.4 and Sobolev embedding theorem, we obtain

‖P(u(t)) − P(v(t))‖s ≤
∫ t

0
‖Rβ

3(t − τ)( f (u(τ)) − f (v(τ)))‖sdτ
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.

∫ t

0
(t − τ)

β
2−1‖(1 − ϑ)u + ϑv‖q−1

s ‖u(τ) − v(τ)‖sdτ

. 2q−1ζq−1T
β
2

0 ‖u − v‖X.

Then,

‖P(u) − P(v)‖X . ζq−1T
β
2

0 ‖u − v‖X.

Taking T0 small enough, we infer that P is contractive. By Banach fixed point theorem, we know that
problem (1.1) admits a unique weak solution ū in C([0,T0];Hs(Ω)). What’s more, we may take T0

satisfying

sup
t∈[0,T0]

tαβ‖ū(t)‖s ≤ ζ. (4.2)

Therefore, using uniqueness of the solution, we obtain u = ū, i.e., u ∈ C([0,T ];Hs(Ω)). Furthermore,
we derive from (4.1) and (4.2) that (1.3) holds.

Proof of Theorem 1.2. By Proposition 3.5, we get u ∈ C1([0,T ];Hs(Ω)). Therefore,

ut(t, x) = ∂tR
β
1(t)φ(x) + ∂tR

β
2(t)ϕ(x) +

∫ t

0
∂tR

β
3(t − τ) f (u(τ, x))dτ.

Using Lemma 3.4, Lemma 4.3 and Sobolev embedding theorem, we obtain

‖ut(t)‖s . tβ(1−δ)−1(‖φ‖s + ‖ϕ‖s) +

∫ t

0
(t − τ)β(1−δ+αq)−2‖ f (u(τ))‖sdτ

. tβ(1−δ)−1(‖φ‖s + ‖ϕ‖s) +

∫ t

0
(t − τ)β(1−δ+αq)−2‖u(τ)‖q−1

∞ ‖u(τ)‖sdτ

. tβ(1−δ)−1(‖φ‖s + ‖ϕ‖s) + ζq
∫ t

0
(t − τ)β(1−δ+αq)−2τ−αβqdτ

. tβ(1−δ)−1(ε + ζq).

Then, we have

tω‖ut(t)‖s . ε + ζq ≤ ζ.

Therefore, we conclude that

sup
0≤t≤T

tω‖ut(t)‖s ≤ ζ,

where

ω = β(δ − 1) + 1.

Electronic Research Archive Volume 31, Issue 9, 5406–5424.



5422

5. Conclusions

In this paper, we study initial boundary value problems for fully nonlocal Boussinesq equations.
We overcome full nonlocal effects generated by C

0Dβ
t and (−∆)σ, and obtain some new results as fol-

lows: (a) We obtain explicit expressions and some rigorous estimates of the Green operators for the
corresponding linear equation; (b) We establish new chain and Leibnitz rules concerning (−∆)σ; (c) We
establish time-wighted fractional Sobolev spaces and obtain global existence and long-time behavior
of weak solutions. Moreover, our work adds some novelty results to the subject of Boussinesq equa-
tions, which may provide a certain theoretical support for the study of fully nonlocal wave equations
and have certain theoretical significance.
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