This paper is focused on a ratio-dependent predator-prey model with cross-diffusion of quasilinear fractional type. By applying the theory of local bifurcation, it can be proved that there exists a positive non-constant steady state emanating from its semi-trivial solution of this problem. Further based on the spectral analysis, such bifurcating steady state is shown to be asymptotically stable when the cross diffusion rate is near some critical value. Finally, numerical simulations and ecological interpretations of our results are presented in the discussion section.
Citation: Qing Li, Junfeng He. Pattern formation in a ratio-dependent predator-prey model with cross diffusion[J]. Electronic Research Archive, 2023, 31(2): 1106-1118. doi: 10.3934/era.2023055
This paper is focused on a ratio-dependent predator-prey model with cross-diffusion of quasilinear fractional type. By applying the theory of local bifurcation, it can be proved that there exists a positive non-constant steady state emanating from its semi-trivial solution of this problem. Further based on the spectral analysis, such bifurcating steady state is shown to be asymptotically stable when the cross diffusion rate is near some critical value. Finally, numerical simulations and ecological interpretations of our results are presented in the discussion section.
[1] | N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theor. Biol., 79 (1979), 83–99. https://doi.org/10.1016/0022-5193(79)90258-3 doi: 10.1016/0022-5193(79)90258-3 |
[2] | K. Kuto, Full cross-diffusion limit in the stationary Shigesada-Kawasaki-Teramoto model, Ann. Inst. Henri Poincare C, 38 (2021), 1943–1959. https://doi.org/10.1016/J.ANIHPC.2021.02.006 doi: 10.1016/J.ANIHPC.2021.02.006 |
[3] | D. Le, Cross diffusion systems on n spatial dimensional domains, Indiana Univ. Math. J., 51 (2002), 625–643. https://doi.org/10.1512/iumj.2002.51.2198 doi: 10.1512/iumj.2002.51.2198 |
[4] | Q. Li, Y. Wu, Stability analysis on a type of steady state for the SKT competition model with large cross diffusion, J. Math. Anal. Appl., 462 (2018), 1048–1072. https://doi.org/10.1016/j.jmaa.2018.01.023 doi: 10.1016/j.jmaa.2018.01.023 |
[5] | Q. Li, Y. Wu, Existence and instability of some nontrivial steady states for the SKT competition model with large cross diffusion, Discrete Contin. Dyn. Syst., 40 (2020), 3657–3682. https://doi.org/10.3934/dcds.2020051 doi: 10.3934/dcds.2020051 |
[6] | Y. Lou, W. Ni, Diffusion vs cross-diffusion: an elliptic approach, J. Differ. Equations, 154 (1999), 157–190. https://doi.org/10.1006/jdeq.1998.3559 doi: 10.1006/jdeq.1998.3559 |
[7] | Y. Lou, W. Ni, Y. Wu, On the global existence of a cross diffusion system, Discrete Contin. Dyn. Syst., 4 (1998), 193–203. https://doi.org/10.3934/dcds.1998.4.193 doi: 10.3934/dcds.1998.4.193 |
[8] | Y. Lou, W. Ni, S. Yotsutani, On a limiting system in the Lotka-Volterra competition with cross diffusion, Discrete Contin. Dyn. Syst., 10 (2004), 435–458. https://doi.org/10.3934/dcds.2004.10.435 doi: 10.3934/dcds.2004.10.435 |
[9] | W. Ni, Y. Wu, Q. Xu, The existence and stability of nontrivial steady states for S-K-T competition model with cross-diffusion, Discrete Contin. Dyn. Syst., 34 (2014), 5271–5298. https://doi.org/10.3934/dcds.2014.34.5271 doi: 10.3934/dcds.2014.34.5271 |
[10] | L. Wang, Y. Wu, Q. Xu, Instability of spiky steady states for S-K-T biological competing model with cross-diffusion, Nonlinear Anal., 159 (2017), 424–457. https://doi.org/10.1016/j.na.2017.02.026 doi: 10.1016/j.na.2017.02.026 |
[11] | K. Kuto, Y. Yamada, Coexistence problem for a prey-predator model with density-dependent diffusion, Nonlinear Anal. Theory Methods Appl., 71 (2009), e2223–e2232. https://doi.org/10.1016/j.na.2009.05.014 doi: 10.1016/j.na.2009.05.014 |
[12] | Y. Wang, W. Li, Stationary problem of a predator-prey system with nonlinear diffusion effects, Comput. Math. Appl., 70 (2015), 2102–2124. https://doi.org/10.1016/j.camwa.2015.08.033 doi: 10.1016/j.camwa.2015.08.033 |
[13] | H. Yuan, J. Wu, Y. Jia, H. Nie, Coexistence states of a predator-prey model with cross-diffusion, Nonlinear Anal. Real World Appl., 41 (2018), 179–203. https://doi.org/10.1016/j.nonrwa.2017.10.009 doi: 10.1016/j.nonrwa.2017.10.009 |
[14] | J. Cao, H. Sun, P. Hao, P. Wang, Bifurcation and turing instability for a predator-prey model with nonlinear reaction cross-diffusion, Appl. Math. Modell., 89 (2021), 1663–1677. https://doi.org/10.1016/j.apm.2020.08.030 doi: 10.1016/j.apm.2020.08.030 |
[15] | P. Abrams, L. Ginzburg, The nature of predation: prey dependent, ratio-dependent, or neither? Trends Ecol. Evol., 15 (2000), 337–341. https://doi.org/10.1016/S0169-5347(00)01908-X doi: 10.1016/S0169-5347(00)01908-X |
[16] | Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389–406. https://doi.org/10.1007/s002850050105 doi: 10.1007/s002850050105 |
[17] | M. Haque, Ratio-dependent predator-prey models of interacting populations, Bull. Math. Biol., 71 (2009), 430–452. https://doi.org/10.1007/s11538-008-9368-4 doi: 10.1007/s11538-008-9368-4 |
[18] | R. Peng, M. Wang, Qualitative analysis on a diffusive prey-predator model with ratio-dependent functional response, Sci. China, Ser. A Math., 51 (2008), 2043–2058. https://doi.org/10.1007/s11425-008-0037-8 doi: 10.1007/s11425-008-0037-8 |
[19] | G. Skalski, J. Gilliam, Functional responses with predator interference: viable alternatives to the Holling type Ⅱ model, Ecology, 82 (2001), 3083–3092. https://doi.org/10.1890/0012-9658(2001)082[3083:frwpiv]2.0.co;2 doi: 10.1890/0012-9658(2001)082[3083:frwpiv]2.0.co;2 |
[20] | N. Kumari, N. Mohan, Coexistence states of a ratio-dependent predator-prey model with nonlinear diffusion, Acta Appl. Math., 176 (2021), 11. https://doi.org/10.1007/s10440-021-00455-w doi: 10.1007/s10440-021-00455-w |
[21] | M. Crandall, P. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321–340. https://doi.org/10.1016/0022-1236(71)90015-2 doi: 10.1016/0022-1236(71)90015-2 |
[22] | E. Dancer, On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc., 284 (1984), 729–743. https://doi.org/10.1090/S0002-9947-1984-0743741-4 doi: 10.1090/S0002-9947-1984-0743741-4 |
[23] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag, Berlin-New York, 1981. https://doi.org/10.1007/bfb0089647 |
[24] | H. Kielh$\ddot{o}$fer, Bifurcation Theory: An Introduction with Applications to PDEs, Springer-Verlag, New York, 2004. https://doi.org/10.1002/zamm.200590030 |
[25] | M. Crandall, P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Ration. Mech. Anal., 52 (1973), 161–180. https://doi.org/10.1007/BF00282325 doi: 10.1007/BF00282325 |