Research article

Effects of additional food availability and pulse control on the dynamics of a Holling-($ p $+1) type pest-natural enemy model

  • Received: 14 June 2023 Revised: 14 September 2023 Accepted: 20 September 2023 Published: 28 September 2023
  • In this paper, a novel pest-natural enemy model with additional food source and Holling-($ p $+1) type functional response is put forward for plant pest management by considering multiple food sources for predators. The dynamical properties of the model are investigated, including existence and local asymptotic stability of equilibria, as well as the existence of limit cycles. The inhibition of natural enemy on pest dispersal and the impact of additional food sources on system dynamics are elucidated. In view of the fact that the inhibitory effect of the natural enemy on pest dispersal is slow and in general deviated from the expected target, an integrated pest management model is established by regularly releasing natural enemies and spraying insecticide to improve the control effect. The influence of the control period on the global stability and system persistence of the pest extinction periodic solution is discussed. It is shown that there exists a time threshold, and as long as the control period does not exceed that threshold, pests can be completely eliminated. When the control period exceeds that threshold, the system can bifurcate the supercritical coexistence periodic solution from the pest extinction one. To illustrate the main results and verify the effectiveness of the control method, numerical simulations are implemented in MATLAB programs. This study not only enriched the related content of population dynamics, but also provided certain reference for the management of plant pest.

    Citation: Xinrui Yan, Yuan Tian, Kaibiao Sun. Effects of additional food availability and pulse control on the dynamics of a Holling-($ p $+1) type pest-natural enemy model[J]. Electronic Research Archive, 2023, 31(10): 6454-6480. doi: 10.3934/era.2023327

    Related Papers:

  • In this paper, a novel pest-natural enemy model with additional food source and Holling-($ p $+1) type functional response is put forward for plant pest management by considering multiple food sources for predators. The dynamical properties of the model are investigated, including existence and local asymptotic stability of equilibria, as well as the existence of limit cycles. The inhibition of natural enemy on pest dispersal and the impact of additional food sources on system dynamics are elucidated. In view of the fact that the inhibitory effect of the natural enemy on pest dispersal is slow and in general deviated from the expected target, an integrated pest management model is established by regularly releasing natural enemies and spraying insecticide to improve the control effect. The influence of the control period on the global stability and system persistence of the pest extinction periodic solution is discussed. It is shown that there exists a time threshold, and as long as the control period does not exceed that threshold, pests can be completely eliminated. When the control period exceeds that threshold, the system can bifurcate the supercritical coexistence periodic solution from the pest extinction one. To illustrate the main results and verify the effectiveness of the control method, numerical simulations are implemented in MATLAB programs. This study not only enriched the related content of population dynamics, but also provided certain reference for the management of plant pest.



    加载中


    [1] S. Li, H. Li, Q. Zhou, F. Zhang, N. Desneux, S. Wang, et al., Essential oils from two aromatic plants repel the tobacco whitefly Bemisia tabaci, J. Pest Sci., 95 (2022), 971–982. https://doi.org/10.1007/s10340-021-01412-0 doi: 10.1007/s10340-021-01412-0
    [2] A. Cuthbertson, L. F. Blackburn, P. Northing, W. Luo, R. Cannon, K. Walters, Leaf dipping as an environmental screening measure to test chemical efficacy against Bemisia tabaci on poinsettia plants, Int. J. Environ. Sci. Technol., 6 (2009), 347–352. https://doi.org/10.1007/bf03326072 doi: 10.1007/bf03326072
    [3] M. Ahmad, M. I. Arif, Z. Ahmad, I. Denholm, Cotton whitefly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan, Pest Manage. Sci., 58 (2002), 203–208. https://doi.org/10.1002/ps.440 doi: 10.1002/ps.440
    [4] B. Xia, Z. Zou, P. Li, P. Lin, Effect of temperature on development and reproduction of Neoseiulus barkeri (Acari: Phytoseiidae) fed on Aleuroglyphus ovatus, Exp. Appl. Acarol., 56 (2012), 33–41. https://doi.org/10.1007/s10493-011-9481-1 doi: 10.1007/s10493-011-9481-1
    [5] Y. Y. Li, M. X. Liu, H. W. Zhou, C. Tian, G. Zhang, Y. Liu, et al., Evaluation of Neoseiulus barkeri (Acari: Phytoseiidae) for control of Eotetranychus kankitus (Acari: Tetranychidae), J. Econ. Entomol., 110 (2017), 903–914. https://doi.org/10.1093/jee/tox056 doi: 10.1093/jee/tox056
    [6] Y. Y. Li, G. H. Zhang, C. B. Tian, M. X. Liu, Y. Liu, H. Liu, et al., Does long-term feeding on alternative prey affect the biological performance of Neoseiulus barkeri (Acari: Phytoseiidae) on the target spider mites, J. Econ. Entomol., 110 (2017), 915–923. https://doi.org/10.1093/jee/tox055 doi: 10.1093/jee/tox055
    [7] Y. Y. Li, J. G. Yuan, M. X. Liu, Z. Zhang, H. Zhou, H. Liu, Evaluation of four artificial diets on demography parameters of Neoseiulus barkeri, BioControl, 66 (2020), 789–802. https://doi.org/10.1007/s10526-021-10108-4 doi: 10.1007/s10526-021-10108-4
    [8] Y. Fan, F. L. Petitt, Functional response of Neoseiulus barkeri Hughes on two-spotted spider mite (Acari: Tetranychidae), Exp. Appl. Acarol., 18 (1994), 613–621. https://doi.org/10.1007/bf00051724 doi: 10.1007/bf00051724
    [9] T. Zou, Effect of photoperiod on development and demographic parameters of Neoseiulus barkeri (Acari: Phytoseiidae) fed on Tyrophagus putrescentiae (Acari: Acaridae), Exp. Appl. Acarol., 70 (2016), 45–56. https://doi.org/10.1007/s10493-016-0065-y doi: 10.1007/s10493-016-0065-y
    [10] H. Yao, W. Zheng, K. Tariq, H. Zhang, Functional and numerical responses of three species of predatory phytoseiid mites (Acari: Phytoseiidae) to Thrips flavidulus (Thysanoptera: Thripidae), Neotrop. Entomol., 43 (2014), 437–445. https://doi.org/10.1007/s13744-014-0229-6 doi: 10.1007/s13744-014-0229-6
    [11] C. Xiang, J. C. Huang, S. G. Ruan, D. M. Xiao, Bifurcation analysis in a host-generalist parasitoid model with Holling Ⅱ functional response, J. Differ. Equations, 268 (2020), 4618–4662. https://doi.org/10.1016/j.jde.2019.10.036 doi: 10.1016/j.jde.2019.10.036
    [12] É. Diz-Pita, M. V. Otero-Espinar, Predator-prey models: A review of some recent advances, Mathematics, 9 (2021), 1783. https://doi.org/10.3390/math9151783 doi: 10.3390/math9151783
    [13] M. X. Chen, R. C. Wu, X. H. Wang, Non-constant steady states and Hopf bifurcation of a species interaction model, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106846. https://doi.org/10.1016/j.cnsns.2022.106846 doi: 10.1016/j.cnsns.2022.106846
    [14] M. X. Chen, H. M. Srivastava, Existence and stability of bifurcating solution of a chemotaxis model, Proc. Am. Math. Soc., 151 (2023), 4735–4749. https://doi.org/10.1090/proc/16536 doi: 10.1090/proc/16536
    [15] M. X. Chen, R. C. Wu. Steady states and spatiotemporal evolution of a diffusive predator-prey model, Chaos Solitons Fractals, 170 (2023), 113397. https://doi.org/10.1016/j.chaos.2023.113397 doi: 10.1016/j.chaos.2023.113397
    [16] A. J. Lotka, Eelements of physical biology, Am. J. Public Health, 21 (1926), 341–343. https://doi.org/10.2307/2298330 doi: 10.2307/2298330
    [17] V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/119012b0 doi: 10.1038/119012b0
    [18] D. Ludwig, D. D. Johns, C. S. Holling, Qualitative analysis of insect outbreak system: the spruce budworm and forest, J. Anim. Ecol., 47 (1978), 315–332. https://doi.org/10.2307/3939 doi: 10.2307/3939
    [19] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [20] Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389–406. https://doi.org/10.1007/s002850050105 doi: 10.1007/s002850050105
    [21] J. Zhou, C. L. Mu, Coexistence states of a Holling type-Ⅱ predator-prey system, J. Math. Anal. Appl., 369 (2010), 555–563. https://doi.org/10.1016/j.jmaa.2010.04.001 doi: 10.1016/j.jmaa.2010.04.001
    [22] K. Vishwakarma, M. Sen, Role of Allee effect in prey and hunting cooperation in a generalist predator, Math. Comput. Simul., 190 (2021), 622–640. https://doi.org/10.1016/j.matcom.2021.05.023 doi: 10.1016/j.matcom.2021.05.023
    [23] M. Lu, J. C. Huang, Global analysis in Bazykin's model with Holling Ⅱ functional response and predator competition, J. Differ. Equations, 280 (2021), 99–138. https://doi.org/10.1016/j.jde.2021.01.025 doi: 10.1016/j.jde.2021.01.025
    [24] Y. Tian, H. M. Li, The study of a predator-prey model with fear effect based on state-dependent harvesting strategy, Complexity, 2022 (2022). https://doi.org/10.1155/2022/9496599 doi: 10.1155/2022/9496599
    [25] M. X. Chen, X. Z. Li, R. C. Wu, Bifurcations and steady states of a predator-prey model with strong Allee and fear effects, Int. J. Biomath., 2023 (2023). https://doi.org/10.1142/s1793524523500663 doi: 10.1142/s1793524523500663
    [26] H. Li, Y. Tian, Dynamic behavior analysis of a feedback control predator-prey model with exponential fear effect and Hassell-Varley functional response, J. Franklin Inst., 360 (2023), 3479–3498. https://doi.org/10.1016/j.jfranklin.2022.11.030 doi: 10.1016/j.jfranklin.2022.11.030
    [27] J. H. P. Dawes, M. O. Souza, A derivation of Holling's type Ⅰ, Ⅱ and Ⅲ functional responses in predator-prey systems, J. Theor. Biol., 327 (2013), 11–22. https://doi.org/10.1016/j.jtbi.2013.02.017 doi: 10.1016/j.jtbi.2013.02.017
    [28] Z. J. Liu, S. M. Zhong, C. Yin, W. F. Chen, Dynamics of impulsive reaction-diffusion predator-prey system with Holling type Ⅲ functional response, Appl. Math. Modell., 35 (2011), 5564–5578. https://doi.org/10.1016/j.apm.2011.05.019 doi: 10.1016/j.apm.2011.05.019
    [29] J. C. Huang, S. G. Ruan, R. J. Song, Bifurcations in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equations, 257 (2014), 1721–1752. https://doi.org/10.1016/j.jde.2014.04.024 doi: 10.1016/j.jde.2014.04.024
    [30] Y. F. Dai, Y. L. Zhao, B. Sang, Four limit cycles in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, Nonlinear Anal. Real World Appl., 50 (2019), 218–239. https://doi.org/10.1016/j.nonrwa.2019.04.003 doi: 10.1016/j.nonrwa.2019.04.003
    [31] Q. Yang, X. H. Zhang, D. Q. Jiang, M. G. Shao, Analysis of a stochastic predator-prey model with weak Allee effect and Holling-(n+1) functional response. Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106454. https://doi.org/10.1016/j.cnsns.2022.106454 doi: 10.1016/j.cnsns.2022.106454
    [32] P. D. N. Srinivasu, B. Prasad, M. Venkatesulu, Biological control through provision of additional food to predators: A theoretical study, Theor. Popul Biol., 72 (2007), 111–120. https://doi.org/10.1016/j.tpb.2007.03.011 doi: 10.1016/j.tpb.2007.03.011
    [33] M. R. Wade, M. P. Zalucki, S. D. Wrateen, K. A. Robinson, Conservation biological control of arthropods using artificial food sprays: Current staus and future challenges, Biol. Control, 45 (2008), 185–199. https://doi.org/10.1016/j.biocontrol.2007.10.024 doi: 10.1016/j.biocontrol.2007.10.024
    [34] P. N. G. Srinivasu, B. Prasad, Time optimal control of an additional food provided predator-prey system with applications to pest management and biological conservation, J. Math. Biol., 60 (2010), 591–613. https://doi.org/10.1007/s00285-009-0279-2 doi: 10.1007/s00285-009-0279-2
    [35] P. D. N. Srinivasu, B. Prasad, Role of quantity of additional food to predators as a control in predator-prey systems with relevance to pest management and biological conservation, Bull. Math. Biol., 73 (2011), 2249–2276. https://doi.org/10.1007/s11538-010-9601-9 doi: 10.1007/s11538-010-9601-9
    [36] P. D. N. Srinivasu, D. K. K. Vamsi, V. S. Ananth, Additional food supplements as a tool for biological conservation of predator-prey systems involving type Ⅲ functional response: A qualitative and quantitative investigation, J. Theor. Biol., 455 (2018), 303–318. https://doi.org/10.1016/j.jtbi.2018.07.019 doi: 10.1016/j.jtbi.2018.07.019
    [37] H. J. Barclay, Models for pest control using predator release, habitat management and pesticide release in combination, J. Appl. Ecol., 19 (1982), 337–348. https://doi.org/10.2307/2403471 doi: 10.2307/2403471
    [38] J. C. Van Lenteren, J. Woets, Biological and integrated pest control in greenhouses, Annu. Rev. Entomol., 33 (1988), 239–269. https://doi.org/10.1146/annurev.en.33.010188.001323 doi: 10.1146/annurev.en.33.010188.001323
    [39] P. S. Simenov, D. D. Bainov, Orbital stability of the periodic solutions of autonomous systems with impulse effect, Int. J. Syst. Sci., 19 (1988), 2561–2585. https://doi.org/10.1080/00207728808547133 doi: 10.1080/00207728808547133
    [40] S. Y. Tang, L. S. Chen, Modelling and analysis of integrated pest management strategy, Discrete Contin. Dyn. Syst. B, 4 (2004), 759–768. https://doi.org/10.3934/dcdsb.2004.4.759 doi: 10.3934/dcdsb.2004.4.759
    [41] B. Liu, Y. Zhang, L. Chen, The dynamical behaviors of a Lotka-Volterra predator-prey model concerning integrated pest management, Nonlinear Anal. Real World Appl., 6 (2005), 227–243. https://doi.org/10.1016/j.nonrwa.2004.08.001 doi: 10.1016/j.nonrwa.2004.08.001
    [42] H. Zhang, J. J. Jiao, L. S. Chen, Pest management through continuous and impulsive control strategies, Biosystems, 90 (2007), 350–361. https://doi.org/10.1016/j.biosystems.2006.09.038 doi: 10.1016/j.biosystems.2006.09.038
    [43] Y. Z. Pei, X. H. Ji, C. G. Li, Pest regulation by means of continuous and impulsive nonlinear controls, Math. Comput. Modell., 51 (2010), 810–822. https://doi.org/10.1016/j.mcm.2009.10.013 doi: 10.1016/j.mcm.2009.10.013
    [44] X. Y. Song, Y. F. Li, Dynamic behaviors of the periodic predator-prey model with modified Leslie-Gower Holling-type Ⅱ schemes and impulsive effect, Nonlinear Anal. Real World Appl., 9 (2008), 64–79. https://doi.org/10.1016/j.nonrwa.2006.09.004 doi: 10.1016/j.nonrwa.2006.09.004
    [45] X. Q. Wang, W. M. Wang, X. L. Lin, Dynamics of a periodic Watt-type predator-prey system with impulsive effect, Chaos Solitons Fractals, 39 (2009), 1270–1282. https://doi.org/10.1016/j.chaos.2007.06.031 doi: 10.1016/j.chaos.2007.06.031
    [46] L. N. Qian, Q. S. Lu, Q. G. Meng, Z. S. Feng, Dynamical behaviors of a prey-predator system with impulsive control, J. Math. Anal. Appl., 363 (2010), 345–356. https://doi.org/10.1016/j.jmaa.2009.08.048 doi: 10.1016/j.jmaa.2009.08.048
    [47] S. Y. Tang, G. Y. Tang, R. A. Cheke, Optimum timing for integrated pest management: modelling rates of pesticide application and natural enemy releases, J. Theor. Biol., 264 (2010), 623–638. https://doi.org/10.1016/j.jtbi.2010.02.034 doi: 10.1016/j.jtbi.2010.02.034
    [48] C. Li, S. Tang, The effects of timing of pulse spraying and releasing periods on dynamics of generalized predator-prey model, Int. J. Biomath., 5 (2012), 1250012. https://doi.org/10.1142/s1793524511001532 doi: 10.1142/s1793524511001532
    [49] Y. Z. Pei, M. M. Chen, X. Y. Liang, C. Li, M. Zhu, Optimizing pulse timings and amounts of biological interventions for a pest regulation model, Nonlinear Anal. Hybrid Syst., 27 (2018), 353–365. https://doi.org/10.1016/j.nahs.2017.10.003 doi: 10.1016/j.nahs.2017.10.003
    [50] J. Hui, D. M. Zhu, Dynamic complexities for prey-dependent consumption integrated pest management models with impulsive effects, Chaos Solitons Fractals, 29 (2006), 233–251. https://doi.org/10.1016/j.chaos.2005.08.025 doi: 10.1016/j.chaos.2005.08.025
    [51] W. Gao, S. Y. Tang, The effects of impulsive releasing methods of natural enemies on pest control and dynamical complexity, Nonlinear Anal. Hybrid Syst., 5 (2011), 540–553. https://doi.org/10.1016/j.nahs.2010.12.001 doi: 10.1016/j.nahs.2010.12.001
    [52] Z. Y. Xiang, S. Y. Tang, C. C. Xiang, J. H. Wu, On impulsive pest control using integrated intervention strategies, Appl. Math. Comput., 269 (2015), 930–946. https://doi.org/10.1016/j.amc.2015.07.076 doi: 10.1016/j.amc.2015.07.076
    [53] S. Tang, C. Li, B. Tang, X. Wang, Global dynamics of a nonlinear state-dependent feedback control ecological model with a multiple-hump discrete map, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 104900. https://doi.org/10.1016/j.cnsns.2019.104900 doi: 10.1016/j.cnsns.2019.104900
    [54] Q. Zhang, B. Tang, T. Cheng, S. Tang, Bifurcation analysis of a generalized impulsive Kolmogorov model with applications to pest and disease control, SIAM J. Appl. Math. 80 (2020), 1796–1819. https://doi.org/10.1137/19m1279320 doi: 10.1137/19m1279320
    [55] Q. Zhang, S. Tang, Bifurcation analysis of an ecological model with nonlinear state-dependent feedback control by Poincaré map defined in phase set, Commun. Nonlinear Sci. Numer. Simul. 108 (2022), 106212. https://doi.org/10.1016/j.cnsns.2021.106212 doi: 10.1016/j.cnsns.2021.106212
    [56] Q. Zhang, S. Tang, X. Zou, Rich dynamics of a predator-prey system with state-dependent impulsive controls switching between two means, J. Differ. Equations, 364 (2023), 336–377. https://doi.org/10.1016/j.jde.2023.03.030 doi: 10.1016/j.jde.2023.03.030
    [57] Y. Tian, Y. Gao, K. B. Sun, Global dynamics analysis of instantaneous harvest fishery model guided by weighted escapement strategy, Chaos Solitons Fractals, 164 (2022), 112597. https://doi.org/10.1016/j.chaos.2022.112597 doi: 10.1016/j.chaos.2022.112597
    [58] Y. Tian, Y. Gao, K. B. Sun, A fishery predator-prey model with anti-predator behavior and complex dynamics induced by weighted fishing strategies, Math. Biosci. Eng., 20 (2003), 1558–1579. https://doi.org/10.3934/mbe.2023071 doi: 10.3934/mbe.2023071
    [59] Y. Tian, Y. Gao, K. B. Sun, Qualitative analysis of exponential power rate fishery model and complex dynamics guided by a discontinuous weighted fishing strategy, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107011. https://doi.org/10.1016/j.cnsns.2022.107011 doi: 10.1016/j.cnsns.2022.107011
    [60] Y. Tian, H. Guo, K. B. Sun, Complex dynamics of two prey-predator harvesting models with prey refuge and interval-valued imprecise parameters, Math. Meth. Appl. Sci., 46 (2023), 14278–14298. https://doi.org/10.1002/mma.9319 doi: 10.1002/mma.9319
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(910) PDF downloads(58) Cited by(2)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog