The main purpose of this article is using the analytic methods and properties of classical Gauss sums to study the calculating problem of fourth power mean values of one kind special Kloosterman's sum, and give a sharp asymptotic formula for it. At the same time, the paper also provides a new and effective method for the study of related power mean value problems.
Citation: Li Rui, Nilanjan Bag. Fourth power mean values of one kind special Kloosterman's sum[J]. Electronic Research Archive, 2023, 31(10): 6445-6453. doi: 10.3934/era.2023326
The main purpose of this article is using the analytic methods and properties of classical Gauss sums to study the calculating problem of fourth power mean values of one kind special Kloosterman's sum, and give a sharp asymptotic formula for it. At the same time, the paper also provides a new and effective method for the study of related power mean value problems.
[1] | H. D. Kloosterman, On the representation of numbers in the form $ax^2 + by^2 + cz^2 + dt^2$, Acta Math., 49 (1926), 407–464. https://doi.org/10.1007/BF02564120 doi: 10.1007/BF02564120 |
[2] | N. M. Katz, Gauss sums, Kloosterman sums and Monodromy groups, Annals of Mathematics Studies 116, Princeton University Press, Princeton (1988). https://doi.org/10.1515/9781400882120 |
[3] | H. Sali$\acute{e}$, Uber die Kloostermanschen Summen $S(u, v; q)$, Math. Zeitschrift, 34 (1931), 91–109. https://doi.org/10.1007/BF01180579 doi: 10.1007/BF01180579 |
[4] | H. Iwaniec, Topics in Classical Automorphic Forms, Grad. Stud. Math., 17 (1997), 61–63. https://doi.org/10.1090/gsm/017 doi: 10.1090/gsm/017 |
[5] | W. P. Zhang, The fourth and sixth power mean of the classical Kloosterman sums, J. Number Theory, 131 (2011), 228–238. https://doi.org/10.1016/j.jnt.2010.08.008 doi: 10.1016/j.jnt.2010.08.008 |
[6] | S. Chowla, On Kloosterman's sums, Norkse Vid. Selbsk. Fak. Frondheim, 40 (1967), 70–72. |
[7] | T. Estermann, On Kloosterman's sums, Mathematica, 8 (1961), 83–86. https://doi.org/10.1112/S0025579300002187 doi: 10.1112/S0025579300002187 |
[8] | N. M. Katz, Estimates for nonsingular multiplicative character sums, Int. Math. Res. Not., 7 (2002) 333–349. |
[9] | A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A., 34 (1948), 203–210. https://doi.org/10.1073/pnas.34.5.204 doi: 10.1073/pnas.34.5.204 |
[10] | W. P. Zhang, On the general Kloosterman sums and its fourth power mean, J. Number Theory, 104 (2004), 156–161. https://doi.org/10.1016/S0022-314X(03)00154-9 doi: 10.1016/S0022-314X(03)00154-9 |
[11] | W. P. Zhang, On the fourth power mean of the general Kloosterman sums, Indian J. Pure Appl. Math., 35 (2004), 237–242. |
[12] | W. P. Zhang, On the fourth power mean of the general Kloosterman sums, J. Number Theory, 169 (2016), 315–326. https://doi.org/10.1016/j.jnt.2016.05.018 doi: 10.1016/j.jnt.2016.05.018 |
[13] | W. P. Zhang, S. M. Shen, A note on the fourth power mean of the generalized Kloosterman sums, J. Number Theory, 174 (2017), 419–426. https://doi.org/10.1016/j.jnt.2016.11.020 doi: 10.1016/j.jnt.2016.11.020 |
[14] | T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4 |
[15] | K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag, New York, 1982. |
[16] | W. M. Schmidt, Equations over finite field, an elementary approach, Springer-Verlag, New York, 1976. https://doi.org/10.1007/BFb0080437 |