Research article Special Issues

Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment


  • Received: 21 September 2022 Revised: 13 December 2022 Accepted: 27 December 2022 Published: 31 January 2023
  • This paper concerns the dynamics of two stochastic hybrid delay Lotka-Volterra systems with harvesting and Lévy noise in a polluted environment (i.e., predator-prey system and competitive system). For every system, sufficient and necessary conditions for persistence in mean and extinction of each species are established. Then, sufficient conditions for global attractivity of the systems are obtained. Finally, sufficient and necessary conditions for the existence of optimal harvesting strategy are provided. The accurate expressions for the optimal harvesting effort (OHE) and the maximum of expectation of sustainable yield (MESY) are given. Our results show that the dynamic behaviors and optimal harvesting strategy are closely correlated with both time delays and three types of environmental noises (namely white Gaussian noises, telephone noises and Lévy noises).

    Citation: Sheng Wang, Lijuan Dong, Zeyan Yue. Optimal harvesting strategy for stochastic hybrid delay Lotka-Volterra systems with Lévy noise in a polluted environment[J]. Mathematical Biosciences and Engineering, 2023, 20(4): 6084-6109. doi: 10.3934/mbe.2023263

    Related Papers:

  • This paper concerns the dynamics of two stochastic hybrid delay Lotka-Volterra systems with harvesting and Lévy noise in a polluted environment (i.e., predator-prey system and competitive system). For every system, sufficient and necessary conditions for persistence in mean and extinction of each species are established. Then, sufficient conditions for global attractivity of the systems are obtained. Finally, sufficient and necessary conditions for the existence of optimal harvesting strategy are provided. The accurate expressions for the optimal harvesting effort (OHE) and the maximum of expectation of sustainable yield (MESY) are given. Our results show that the dynamic behaviors and optimal harvesting strategy are closely correlated with both time delays and three types of environmental noises (namely white Gaussian noises, telephone noises and Lévy noises).



    加载中


    [1] X. Zou, K. Wang, Optimal harvesting for a stochastic regime-switching logistic diffusion system with jumps, Nonlinear Anal. Hybrid Syst., 13 (2014), 32–44. https://doi.org/10.1016/j.nahs.2014.01.001 doi: 10.1016/j.nahs.2014.01.001
    [2] J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 197 (2020), 104176. https://doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176
    [3] Q. Liu, D. Jiang, Influence of the fear factor on the dynamics of a stochastic predator-prey model, Appl. Math. Lett., 112 (2021), 106756. https://doi.org/10.1016/j.aml.2020.106756 doi: 10.1016/j.aml.2020.106756
    [4] Q. Yang, X. Zhang, D. Jiang, Dynamical behaviors of a stochastic food chain system with Ornstein-Uhlenbeck process, J. Nonlinear Sci., 32 (2022), 1–40. https://doi.org/10.1007/s00332-021-09760-y doi: 10.1007/s00332-021-09760-y
    [5] L. Wang, D. Jiang, Ergodicity and threshold behaviors of a predator-prey model in stochastic chemostat driven by regime switching, Math. Meth. Appl. Sci., 44 (2021), 325–344. https://doi.org/10.1002/mma.6738 doi: 10.1002/mma.6738
    [6] Q. Luo, X. Mao, Stochastic population dynamics under regime switching, J. Math. Anal. Appl., 334 (2007), 69–84. https://doi.org/10.1016/j.jmaa.2006.12.032 doi: 10.1016/j.jmaa.2006.12.032
    [7] Q. Luo, X. Mao, Stochastic population dynamics under regime switching Ⅱ, J. Math. Anal. Appl., 355 (2009), 577–593. https://doi.org/10.1016/j.jmaa.2009.02.010 doi: 10.1016/j.jmaa.2009.02.010
    [8] C. Zhu, G. Yin, On hybrid competitive Lotka-Volterra ecosystems, Nonlinear Anal., 71 (2009), 1370–1379. https://doi.org/10.1016/j.na.2009.01.166 doi: 10.1016/j.na.2009.01.166
    [9] X. Li, A. Gray, D. Jiang, X. Mao, Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching, J. Math. Anal. Appl., 376 (2011), 11–28. https://doi.org/10.1016/j.jmaa.2010.10.053 doi: 10.1016/j.jmaa.2010.10.053
    [10] M. Ouyang, X. Li, Permanence and asymptotical behavior of stochastic prey-predator system with Markovian switching, Appl. Math. Comput., 266 (2015), 539–559. https://doi.org/10.1016/j.amc.2015.05.083 doi: 10.1016/j.amc.2015.05.083
    [11] J. Bao, J. Shao, Permanence and extinction of regime-switching predator-prey models, SIAM J. Math. Anal., 48 (2016), 725–739. https://doi.org/10.1137/15M1024512 doi: 10.1137/15M1024512
    [12] M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal. Hybrid Syst., 28 (2018), 87–104. https://doi.org/10.1016/j.nahs.2017.10.004 doi: 10.1016/j.nahs.2017.10.004
    [13] Y. Cai, S. Cai, X. Mao, Stochastic delay foraging arena predator-prey system with Markov switching, Stoch. Anal. Appl., 38 (2020), 191–212. https://doi.org/10.1080/07362994.2019.1679645 doi: 10.1080/07362994.2019.1679645
    [14] J. Bao, X. Mao, G. Yin, C. Yuan, Competitive Lotka-Volterra population dynamics with jumps, Nonlinear Anal., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
    [15] J. Bao, C. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363–375. https://doi.org/10.1016/j.jmaa.2012.02.043 doi: 10.1016/j.jmaa.2012.02.043
    [16] M. Liu, K. Wang, Dynamics of a Leslie-Gower Holling-type Ⅱ predator-prey system with Lévy jumps, Nonlinear Anal., 85 (2013), 204–213. https://doi.org/10.1016/j.na.2013.02.018 doi: 10.1016/j.na.2013.02.018
    [17] M. Liu, K. Wang, Stochastic Lotka-Volterra systems with Lévy noise, J. Math. Anal. Appl., 410 (2014), 750–763. https://doi.org/10.1016/j.jmaa.2013.07.078 doi: 10.1016/j.jmaa.2013.07.078
    [18] M. Liu, M. Deng, B. Du, Analysis of a stochastic logistic model with diffusion, Appl. Math. Comput., 266 (2015), 169–182. https://doi.org/10.1016/j.amc.2015.05.050 doi: 10.1016/j.amc.2015.05.050
    [19] X. Zhang, W. Li, M. Liu, K. Wang, Dynamics of a stochastic Holling Ⅱ one-predator two-prey system with jumps, Phys. A, 421 (2015), 571–582. https://doi.org/10.1016/j.physa.2014.11.060 doi: 10.1016/j.physa.2014.11.060
    [20] D. Valenti, G. Denaro, A. Cognata, B. La Spagnolo, A. Bonanno, G. Basilone, et al., Picophytoplankton dynamics in noisy marine environment, Acta Phys. Pol. B, 43 (2012), 1227–1240. https://doi.org/10.5506/APhysPolB.43.1227 doi: 10.5506/APhysPolB.43.1227
    [21] C. Guarcello, D. Valenti, G. Augello, B. Spagnolo, The role of non-Gaussian sources in the transient dynamics of long Josephson junctions, Acta Phys. Pol. B, 44 (2013), 997–1005. https://doi.org/10.5506/APhysPolB.44.997 doi: 10.5506/APhysPolB.44.997
    [22] C. Guarcello, D. Valenti, B. Spagnolo, V. Pierro, G. Filatrella, Josephson-based threshold detector for Lévy-distributed current fluctuations, Phys. Rev. Appl., 11 (2019), 044078. https://doi.org/10.1103/PhysRevApplied.11.044078 doi: 10.1103/PhysRevApplied.11.044078
    [23] A. A. Dubkov, A. La Cognata, B. Spagnolo, The problem of analytical calculation of barrier crossing characteristics for Lévy flights, J. Stat. Mech. Theory Exp., 2009 (2019), P01002. https://doi.org/10.1088/1742-5468/2009/01/P01002 doi: 10.1088/1742-5468/2009/01/P01002
    [24] B. Lisowski, D. Valenti, B. Spagnolo, M. Bier, E. Gudowska-Nowak, Stepping molecular motor amid Lévy white noise, Phys. Rev. E, 91 (2015), 042713. https://doi.org/10.1103/PhysRevE.91.042713 doi: 10.1103/PhysRevE.91.042713
    [25] I. A. Surazhevsky, V. A. Demin, A. I. Ilyasov, A. V. Emelyanov, K. E. Nikiruy, V. V. Rylkov, et al., Noise-assisted persistence and recovery of memory state in a memristive spiking neuromorphic network, Chaos Solitons Fractals, 146 (2021), 110890. https://doi.org/10.1016/j.chaos.2021.110890 doi: 10.1016/j.chaos.2021.110890
    [26] A. N. Mikhaylov, D. V. Guseinov, A. I. Belov, D. S. Korolev, V. A. Shishmakova, M. N. Koryazhkina, et al., Stochastic resonance in a metal-oxide memristive device, Chaos Solitons Fractal, 144 (2021), 110723. https://doi.org/10.1016/j.chaos.2021.110723 doi: 10.1016/j.chaos.2021.110723
    [27] Y. V. Ushakov, A. A. Dubkov, B. Spagnolo, Spike train statistics for consonant and dissonant musical accords in a simple auditory sensory model, Phys. Rev. E, 81 (2010), 041911. https://doi.org/10.1103/PhysRevE.81.041911 doi: 10.1103/PhysRevE.81.041911
    [28] N. V. Agudov, A. V. Safonov, A. V. Krichigin, A. A. Kharcheva, A. A. Dubkov, D. Valenti, et al., Nonstationary distributions and relaxation times in a stochastic model of memristor, J. Stat. Mech. Theory Exp., 2020 (2020), 024003. https://doi.org/10.1088/1742-5468/ab684a doi: 10.1088/1742-5468/ab684a
    [29] D. O. Filatov, D. V. Vrzheshch, O. V. Tabakov, A. S. Novikov, A. I. Belov, I. N. Antonov, et al., Noise-induced resistive switching in a memristor based on $\mathrm{ZrO_{2}(Y)/Ta_{2}O_{5}}$ stack, J. Stat. Mech. Theory Exp., 2019 (2019), 124026. https://doi.org/10.1088/1742-5468/ab5704 doi: 10.1088/1742-5468/ab5704
    [30] A. Carollo, B. Spagnolo, A. A. Dubkov, D. Valenti, On quantumness in multi-parameter quantum estimation, J. Stat. Mech. Theory Exp., 2019 (2019), 094010. https://doi.org/10.1088/1742-5468/ab3ccb doi: 10.1088/1742-5468/ab3ccb
    [31] R. Stassi, S. Savasta, L. Garziano, B. Spagnolo, F. Nori, Output field-quadrature measurements and squeezing in ultrastrong cavity-QED, New J. Phys., 18 (2016), 123005. https://doi.org/10.1088/1367-2630/18/12/123005 doi: 10.1088/1367-2630/18/12/123005
    [32] S. Ciuchi, F. De Pasquale, B. Spagnolo, Nonlinear relaxation in the presence of an absorbing barrier, Phys. Rev. E, 47 (1993), 3915. https://doi.org/10.1103/PhysRevE.47.3915 doi: 10.1103/PhysRevE.47.3915
    [33] Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, Boston, 1993.
    [34] W. Zuo, D. Jiang, X. Sun, T. Hayat, A. Alsaedi, Long-time behaviors of a stochastic cooperative Lotka-Volterra system with distributed delay, Phys. A, 506 (2018), 542–559. https://doi.org/10.1016/j.physa.2018.03.071 doi: 10.1016/j.physa.2018.03.071
    [35] F. A. Rihan, H. J. Alsakaji, Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species, Discret. Contin. Dyn. Syst. Ser. S, 15 (2020), 245. https://doi.org/10.3934/dcdss.2020468 doi: 10.3934/dcdss.2020468
    [36] H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021), 125919. https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
    [37] L. Wang, R. Zhang, Y. Wang, Global exponential stability of reaction-diffusion cellular neural networks with S-type distributed time delays, Nonlinear Anal., 10 (2009), 1101–1113. https://doi.org/10.1016/j.nonrwa.2007.12.002 doi: 10.1016/j.nonrwa.2007.12.002
    [38] L. Wang, D. Xu, Global asymptotic stability of bidirectional associative memory neural networks with S-type distributed delays, Int. J. Syst. Sci., 338 (2002), 869–877. https://doi.org/10.1080/00207720210161777 doi: 10.1080/00207720210161777
    [39] S. Abbas, D. Bahuguna, M. Banerjee, Effect of stochastic perturbation on a two species competitive model, Nonlinear Anal. Hybrid Syst., 3 (2009), 195–206. https://doi.org/10.1016/j.nahs.2009.01.001 doi: 10.1016/j.nahs.2009.01.001
    [40] Q. Han, D. Jiang, C. Ji, Analysis of a delayed stochastic predator-prey model in a polluted environment, Appl. Math. Model., 38 (2014), 3067–3080. https://doi.org/10.1016/j.apm.2013.11.014 doi: 10.1016/j.apm.2013.11.014
    [41] Q. Liu, Q. Chen, Analysis of a stochastic delay predator-prey system with jumps in a polluted environment, Appl. Math. Comput., 242 (2014), 90–100. https://doi.org/10.1016/j.amc.2014.05.033 doi: 10.1016/j.amc.2014.05.033
    [42] Y. Zhao, S. Yuan, Optimal harvesting policy of a stochastic two-species competitive model with Lévy noise in a polluted environment, Phys. A, 477 (2017), 20–33. https://doi.org/10.1016/j.physa.2017.02.019 doi: 10.1016/j.physa.2017.02.019
    [43] M. Liu, X. He, J. Yu, Dynamics of a stochastic regime-switching predator-prey model with harvesting and distributed delays, Nonlinear Anal. Hybrid Syst., 28 (2018), 87–104. https://doi.org/10.1016/j.nahs.2017.10.004 doi: 10.1016/j.nahs.2017.10.004
    [44] M. Liu, C. Bai, Dynamics of a stochastic one-prey two-predator model with Lévy jumps, Appl. Math. Comput., 284 (2016), 308–321. https://doi.org/10.1016/j.amc.2016.02.033 doi: 10.1016/j.amc.2016.02.033
    [45] Y. Zhao, L. You, D. Burkow, S. Yuan, Optimal harvesting strategy of a stochastic inshore-offshore hairtail fishery model driven by Lévy jumps in a polluted environment, Nonlinear Dyn., 95 (2019), 1529–1548. https://doi.org/10.1007/s11071-018-4642-y doi: 10.1007/s11071-018-4642-y
    [46] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Stochastic mutualism model with Lévy jumps, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 78–90. https://doi.org/10.1016/j.cnsns.2016.05.003 doi: 10.1016/j.cnsns.2016.05.003
    [47] H. Qiu, W. Deng, Optimal harvesting of a stochastic delay competitive Lotka-Volterra model with Lévy jumps, Appl. Math. Comput., 317 (2018), 210–222. https://doi.org/10.1016/j.amc.2017.08.044 doi: 10.1016/j.amc.2017.08.044
    [48] M. Liu, K. Wang, Survival analysis of stochastic single-species population models in polluted environments, Ecol. Model., 220 (2009), 1347–1357. https://doi.org/10.1016/j.ecolmodel.2009.03.001 doi: 10.1016/j.ecolmodel.2009.03.001
    [49] G. Liu, X. Meng, Optimal harvesting strategy for a stochastic mutualism system in a polluted environment with regime switching, Phys. A, 536 (2019), 120893. https://doi.org/10.1016/j.physa.2019.04.129 doi: 10.1016/j.physa.2019.04.129
    [50] S. Wang, L. Wang, T. Wei, Optimal harvesting for a stochastic logistic model with S-type distributed time delay, J. Differ. Equation Appl., 23 (2017), 618–632. https://doi.org/10.1080/10236198.2016.1269761 doi: 10.1080/10236198.2016.1269761
    [51] M. Liu, K. Wang, Q. Wu, Survival analysis of stochastic competitive models in a polluted environment and stochastic competitive exclusion principle, Bull. Math. Biol., 73 (2011), 1969–2012. https://doi.org/10.1007/s11538-010-9569-5 doi: 10.1007/s11538-010-9569-5
    [52] M. Liu, C. Bai, On a stochastic delayed predator-prey model with Lévy jumps, Appl. Math. Comput., 228 (2014), 563–570. https://doi.org/10.1016/j.amc.2013.12.026 doi: 10.1016/j.amc.2013.12.026
    [53] Q. Liu, Q. Chen, Z. Liu, Analysis on stochastic delay Lotka-Volterra systems driven by Lévy noise, Appl. Math. Comput., 235 (2014), 261–271. https://doi.org/10.1016/j.amc.2014.03.011 doi: 10.1016/j.amc.2014.03.011
    [54] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing Limited, 2007. https://doi.org/10.1533/9780857099402
    [55] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781
    [56] I. Barbalat, Systems dequations differentielles d'osci d'oscillations, Rev. Roumaine Math. Pures Appl., 4 (1959), 267–270.
    [57] M. Kinnally, R. Williams, On existence and uniqueness of stationary distributions for stochastic delay differential equations with positivity constraints, Electron. J. Probab., 15 (2010), 409–451. https://doi.org/10.1214/EJP.v15-756 doi: 10.1214/EJP.v15-756
    [58] M. Hairer, J. C. Mattingly, M. Scheutzow, Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149 (2011), 223–259. https://doi.org/10.1007/s00440-009-0250-6 doi: 10.1007/s00440-009-0250-6
    [59] G. Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge University Press, 1996.
    [60] M. Liu, Optimal harvesting policy of a stochastic predator-prey model with time delay, Appl. Math. Lett., 48 (2015), 102–108. https://doi.org/10.1016/j.aml.2014.10.007 doi: 10.1016/j.aml.2014.10.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1099) PDF downloads(105) Cited by(0)

Article outline

Figures and Tables

Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog