Citation: Andrew H. Morgenstern, Thomas M. Calascione, Nathan A. Fischer, Thomas J. Lee, John E. Wentz, Brittany B. Nelson-Cheeseman. Thermoplastic magnetic elastomer for fused filament fabrication[J]. AIMS Materials Science, 2019, 6(3): 363-376. doi: 10.3934/matersci.2019.3.363
[1] | Rafique M, Kandare E, Sprenger S (2017) Fiber-reinforced magneto-polymer matrix composites (FR–MPMCs)-A review. J Mater Res 32: 1020–1046. doi: 10.1557/jmr.2017.63 |
[2] | Yang L, Martin L, Staiculescu D, et al. (2008) A novel flexible magnetic composite material for RFID, wearable RF and bio-monitoring applications. 2008 IEEE MTT-S International Microwave Symposium Digest 2008: 963–966. |
[3] | Thévenot J, Oliveira H, Sandre O, et al. (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42: 7099–7116. doi: 10.1039/c3cs60058k |
[4] | Evans B, Fiser B, Prins W, et al. (2012) A highly tunable silicone-based magnetic elastomer with nanoscale homogeneity. J Magn Magn Mater 324: 501–507. doi: 10.1016/j.jmmm.2011.08.045 |
[5] | Carlson J, Jolly M (2000) MR fluid, foam and elastomer devices. Mechatronics 10: 555–569. doi: 10.1016/S0957-4158(99)00064-1 |
[6] | Schmauch M, Mishra S, Evans B, et al. (2017) Chained iron microparticles for directionally controlled actuation of soft robots. ACS Appl Mater Inter 9: 11895–11901. doi: 10.1021/acsami.7b01209 |
[7] | Ubaidillah, Sutrisno J, Purwanto A, et al. (2015) Recent progress on magnetorheological solids: materials, fabrication, testing, and applications. Adv Eng Mater 17: 563–597. doi: 10.1002/adem.201400258 |
[8] | Shamonin M, Kramarenko E (2018) Highly Responsive Magnetoactive Elastomers, In: Domracheva N, Caporali M, Rentschler E, Novel Magnetic Nanostructures: Unique Properties and Applications, Elsevier, 221–245. |
[9] | Karsli N, Aytac A (2013) Tensile and thermomechanical properties of short carbon fiber reinforced polyamide 6 composites. Compos Part B-Eng 51: 270–275. doi: 10.1016/j.compositesb.2013.03.023 |
[10] | Ning F, Cong W, Qiu J, et al. (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos Part B-Eng 80: 369–378. doi: 10.1016/j.compositesb.2015.06.013 |
[11] | Gu H, Tadakamalla S, Huang Y, et al. (2012) Polyaniline stabilized magnetite nanoparticle reinforced epoxy nanocomposites. ACS Appl Mater Inter 4: 5613–5624. doi: 10.1021/am301529t |
[12] | Abramchuk S, Kramarenko E, Grishin D, et al. (2007) Novel highly elastic magnetic materials for dampers and seals: Part II. Material behavior in a magnetic field. Polym Advan Technol 18: 513–518. |
[13] | Stolbov O, Raikher Y, Balasoiu M (2011) Modelling of magnetodipolar striction in soft magnetic elastomers. Soft Matter 7: 8484–8487. doi: 10.1039/c1sm05714f |
[14] | Guo N, Leu M (2013) Additive manufacturing: Technology, applications and research needs. Front Mech Eng 8: 215–243. doi: 10.1007/s11465-013-0248-8 |
[15] | Drummer D, Cifuentes-Cuéllar S, Rietzel D (2012) Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyping J 18: 500–507. doi: 10.1108/13552541211272045 |
[16] | Ge C, Priyadarshini L, Cormier D, et al. (2018) A preliminary study of cushion properties of a 3D printed thermoplastic polyurethane Kelvin foam. Packag Technol Sci 31: 361–368. doi: 10.1002/pts.2330 |
[17] | Carneiro O, Silva A, Gomes R (2015) Fused deposition modeling with polypropylene. Mater Design 83: 768–776. doi: 10.1016/j.matdes.2015.06.053 |
[18] | Ahn S, Montero M, Odell D, et al. (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyping J 8: 248–257. doi: 10.1108/13552540210441166 |
[19] | Tanikella N, Wittbrodt B, Pearce J (2017) Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Addit Manuf 15: 40–47. doi: 10.1016/j.addma.2017.03.005 |
[20] | Tibbits S (2015) Challenges and Opportunities. 3D Print Addit Manuf 2: 151. doi: 10.1089/3dp.2015.29002.sti |
[21] | Zhong W, Li F, Zhang Z, et al. (2001) Short fiber reinforced composites for fused deposition modeling. Mat Sci Eng A-Struct 301: 125–130. doi: 10.1016/S0921-5093(00)01810-4 |
[22] | Tekinalp H, Kunc V, Velez-Garcia G, et al. (2014) Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105: 144–150. doi: 10.1016/j.compscitech.2014.10.009 |
[23] | Sharma U, Concagh D, Core L, et al. (2018) The development of bioresorbable composite polymeric implants with high mechanical strength. Nat Mater 17: 96–102. doi: 10.1038/nmat5016 |
[24] | Libanori R, Erb R, Reiser A, et al. (2012) Stretchable heterogeneous composites with extreme mechanical gradients. Nat Commun 3: 1265. doi: 10.1038/ncomms2281 |
[25] | Kim Y, Ribeiro L, Maillot F, et al. (2010) Bio-inspired synthesis and mechanical properties of calcite-polymer particle composites. Adv Mater 22: 2082–2086. doi: 10.1002/adma.200903743 |
[26] | Nikzad M (2011) New metal/polymer composites for fused deposition modelling applications [PhD thesis]. Swinburne University of Technology, Melbourne, Australia. |
[27] | Kim Y, Yuk H, Zhao R, et al. (2018) Printing ferromagnetic domains for untethered fast- transforming soft materials. Nature 558: 274–279. doi: 10.1038/s41586-018-0185-0 |
[28] | Technical Specifications: NinjaFlex® 3D Printing Filament. Available from: https://ninjatek.fppsites.com/wp-content/uploads/2018/10/NinjaFlex-TDS.pdf. |
[29] | Lee T, Morgenstern A, Höft T, et al. (2019) Dispersion of particulate in solvent cast magnetic thermoplastic polyurethane elastomer composites. AIMS Mater Sci 6: 354–362. doi: 10.3934/matersci.2019.3.354 |
[30] | Callister W, Rethwisch D (2015) Characteristics, Applications, and Processing of Polymers, In: Fundamentals of Materials Science and Engineering: An Integrated Approach, 8 Eds., Wiley, 575–576. |
[31] | Fu S, Feng X, Lauke B, et al. (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B-Eng 39: 933–961. doi: 10.1016/j.compositesb.2008.01.002 |
[32] | Ahmed S, Jones F (1990) A review of particulate reinforcement theories for polymer composites. J Mater Sci 25: 4933–4942. doi: 10.1007/BF00580110 |
[33] | Pu Z, Mark J, Jethmalani J, et al. (1997) Effects of dispersion and aggregation of silica in the reinforcement of poly(methyl acrylate) elastomers. Chem Mater 9: 2442–2447. doi: 10.1021/cm970210j |
[34] | Drozdov A, Dorfmann A (2001) The stress–strain response and ultimate strength of filled elastomers. Comp Mater Sci 21: 395–417. doi: 10.1016/S0927-0256(01)00154-9 |
[35] | Abramchuk S, Kramarenko E, Stepanov G, et al. (2007) Novel highly elastic magnetic materials for dampers and seals : Part I. Preparation and characterization of the elastic materials. Polym Advan Technol 18: 883–890. |
[36] | Boczkowska A, Awietjan SF, Wejrzanowski T, et al. (2009) Image analysis of the microstructure of magnetorheological elastomers. J Mater Sci 44: 3135–3140. doi: 10.1007/s10853-009-3417-8 |
[37] | Li J, Zhang M, Wang L, et al. (2011) Design and fabrication of microfluidic mixer from carbonyl iron–PDMS composite membrane. Microfluid Nanofluid 10: 919–925. doi: 10.1007/s10404-010-0712-2 |
[38] | Masłowski M, Strąkowska A, Strzelec K (2017) Magnetic (ethylene–octene) elastomer composites obtained by extrusion. Polym Eng Sci 57: 520–527. doi: 10.1002/pen.24446 |
[39] | Cullity B (1972) Ferrimagnetism, In: Introduction to Magnetic Materials, Menio Park: Addison- Wesley Publishing Company, 190. |