Citation: Fu-Chieh Hsu, Tei-Chen Chen. Molecular dynamics simulation on mechanical behaviors of NixAl100−x nanowires under uniaxial compressive stress[J]. AIMS Materials Science, 2019, 6(3): 377-396. doi: 10.3934/matersci.2019.3.377
[1] | Swain M, Singh S, Basu S, et al. (2014) Identification of a kinetic length scale which dictates alloy phase composition in Ni-Al interfaces on annealing at low temperatures. J Appl Phys 116: 222208. doi: 10.1063/1.4902965 |
[2] | Liu E, Jia J, Bai Y, et al. (2014) Study on preparation and mechanical property of nanocrystalline NiAl intermetallic. Mater Design 53: 596–601. doi: 10.1016/j.matdes.2013.07.052 |
[3] | Vitali E, Wei CT, Benson DJ, et al. (2011) Effects of geometry and intermetallic bonding on the mechanical response, spalling and fragmentation of Ni–Al laminates. Acta Mater 59: 5869–5880. doi: 10.1016/j.actamat.2011.05.047 |
[4] | Zhang W, Peng Y, Liu Z (2014) Molecular dynamics simulations of the melting curve of NiAl alloy under pressure. AIP Adv 4: 057110. doi: 10.1063/1.4876515 |
[5] | Darolia R (1994) Structural applications of NiAl. J Mater Sci Technol 10: 157–167. |
[6] | Bei H, George EP (2005) Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy. Acta Mater 53: 69–77. doi: 10.1016/j.actamat.2004.09.003 |
[7] | Lee JY, Han KH, Park JM, et al. (2006) Deformation and evolution of shear bands under compressive loading in bulk metallic glasses. Acta Mater 54: 5271–5279. doi: 10.1016/j.actamat.2006.07.014 |
[8] | Alavi A, Mirabbaszadeh K, Nayebi P, et al. (2010) Molecular dynamics simulation of mechanical properties of Ni–Al nanowires. Comp Mater Sci 50: 10–14. doi: 10.1016/j.commatsci.2010.06.037 |
[9] | Wang Q, Yang Y, Jiang H, et al. (2014) Superior tensile ductility in bulk metallic glass with gradient amorphous structure. Sci Rep 4: 4757–4762. |
[10] | Jang D, Greer JR (2010) Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat Mater 9: 215–219. |
[11] | Guo SF, Qiu JL, Yu P, et al. (2014) Fe-based bulk metallic glasses: brittle or ductile? Appl Phys Lett 105: 161901. doi: 10.1063/1.4899124 |
[12] | Jiang MQ, Wilde G, Jiang F, et al. (2015) Understanding ductile-to-brittle transition of metallic glasses from shear transformation zone dilatation. Theor Appl Mech Lett 5: 200–204. doi: 10.1016/j.taml.2015.09.002 |
[13] | Xi XK, Zhao DQ, Pan MX, et al. (2005) Fracture of brittle metallic glasses: Brittleness or plasticity. Phys Rev Lett 94: 125510. doi: 10.1103/PhysRevLett.94.125510 |
[14] | Sopu D, Foroughi A, Stoica M, et al. (2016) Brittle-to-ductile transition in metallic glass nanowires. Nano Lett 16: 4467–4471. doi: 10.1021/acs.nanolett.6b01636 |
[15] | Wu FF, Zhang ZF, Mao SX, et al. (2009) Effect of sample size on ductility of metallic glass. Phil Mag Lett 89: 178–184. doi: 10.1080/09500830902720917 |
[16] | Tian L, Wang XL, Shan ZW (2016) Mechanical behavior of micronanoscaled metallic glasses. Mater Res Lett 4: 63–74. doi: 10.1080/21663831.2015.1124298 |
[17] | Magagnosc DJ, Ehrbar R, Kumar G, et al. (2013) Tunable tensile ductility in metallic glasses. Sci Rep 3: 1096. doi: 10.1038/srep01096 |
[18] | Chen DZ, Jang D, Guan KM, et al. (2013) Nanometallic glasses: size reduction brings ductility, surface state drives its extent. Nano Lett 13: 4462–4468. doi: 10.1021/nl402384r |
[19] | Wang Z, Mook WM, Niederberger C, et al. (2012) Compression of nanowires using a flat indenter: diametrical elasticity measurement. Nano Lett 12: 2289–2293. doi: 10.1021/nl300103z |
[20] | Hwang B, Kim T, Han SM (2016) Compression and tension bending fatigue behavior of Ag nanowire network. Extreme Mech Lett 8: 266–272. doi: 10.1016/j.eml.2016.02.011 |
[21] | Wang J, Hodgson PD, Zhang J, et al. (2010) Effects of pores on shear bands in metallic glasses: A molecular dynamics study. Comp Mater Sci 50: 211–217. doi: 10.1016/j.commatsci.2010.08.001 |
[22] | Wang JG, Chan KC, Fan JC, et al. (2014) Buckling of metallic glass bars. J Non-Cryst Solids 387: 1–5. |
[23] | Wachter J, Gutiérrez G, Zúniga A, et al. (2014) Buckling of Cu–Zr-based metallic glasses nanowires: molecular dynamics study of surface effects. J Mater Sci 49: 8051–8056. doi: 10.1007/s10853-014-8512-9 |
[24] | Sung PH, Chen TC (2016) Effects of quenching rate on crack propagation in NiAl alloy using molecular dynamics. Comp Mater Sci 114: 13–17. |
[25] | Zhuo XR, Beom HG (2019) Effect of side surface orientation on the mechanical properties of silicon nanowires: a molecular dynamics study. Crystals 9: 102. doi: 10.3390/cryst9020102 |
[26] | Cao LX, Shang JX, Zhang Y (2009) Molecular dynamics simulation of stress-induced martensitic phase transformation in NiAl. Acta Phys Sin-Ch Ed 58: 7307–7312. |
[27] | Pun GPP, Mishin Y (2010) Molecular dynamics simulation of the martensitic phase transformation in NiAl alloys. J Phys-Condens Mat 22: 395403. |
[28] | Mortazavi B, Cuniberti G, Rabczuk T (2015) Mechanical properties and thermal conductivity of graphitic carbon nitride: A molecular dynamics study. Comp Mater Sci 99: 285–289. doi: 10.1016/j.commatsci.2014.12.036 |
[29] | Murray JL (1986) Binary alloy phase diagrams. ASM International, Materials Park, OH. |
[30] | Daw MS, Baskes MI (1984) Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29: 6443–6452. doi: 10.1103/PhysRevB.29.6443 |
[31] | Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B 58: 11085–11088. |
[32] | Wang GF, Feng XQ (2009) Surface effects on buckling of nanowires under uniaxial compression. Appl Phys Lett 94: 141913. |
[33] | Jiang JW (2015) The strain rate effect on the buckling of single-layer MoS2. Sci Rep 5: 7814. doi: 10.1038/srep07814 |