Citation: Bobin Xing, Shaohua Yan, Wugui Jiang, Qing H. Qin. Deformation mechanism of kink-step distorted coherent twin boundaries in copper nanowire[J]. AIMS Materials Science, 2017, 4(1): 102-117. doi: 10.3934/matersci.2017.1.102
[1] | Beyerlein IJ, Zhang X, Misra A (2014) Growth twins and deformation twins in metals. Annu Rev Materi Res 44: 329–363. doi: 10.1146/annurev-matsci-070813-113304 |
[2] | Lu L, Shen Y, Chen X, et al. (2004) Ultrahigh strength and high electrical conductivity in copper. Science 304: 422–426. doi: 10.1126/science.1092905 |
[3] | Lu L, Chen X, Huang X, et al. (2009) Revealing the maximum strength in nanotwinned copper. Science 323: 607–610. doi: 10.1126/science.1167641 |
[4] | Xing B, Yan S, Jiang W, et al. (2016) Atomistic study for the vibrational properties on Σ5 symmetric tilt bicrystal copper nanowires. Appl Mech Mater 846: 193–198. doi: 10.4028/www.scientific.net/AMM.846.193 |
[5] | Bufford D, Liu Y, Wang J, et al. (2014) In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries. Nat Commun 5. |
[6] | Zhang Y, Huang H (2009) Do Twin Boundaries Always Strengthen Metal Nanowires? Nanoscale Res Lett 4: 34–38. doi: 10.1007/s11671-008-9198-1 |
[7] | Zhang J, Yan Y, Liu X, et al. (2014) Influence of coherent twin boundaries on three-point bending of gold nanowires. J Phys D Appl Phys 47: 195301. doi: 10.1088/0022-3727/47/19/195301 |
[8] | Bezares J, Jiao S, Liu Y, et al. (2012) Indentation of nanotwinned fcc metals: Implications for nanotwin stability. Acta Mater 60: 4623–4635. doi: 10.1016/j.actamat.2012.03.020 |
[9] | Sun J, Fang L, Ma A, et al. (2015) The fracture behavior of twinned Cu nanowires: A molecular dynamics simulation. Mater Sci Eng A 634: 86–90. doi: 10.1016/j.msea.2015.03.034 |
[10] | Kulkarni Y, Asaro RJ, Farkas D (2009) Are nanotwinned structures in fcc metals optimal for strength, ductility and grain stability? Scripta Mater 60: 532–535. doi: 10.1016/j.scriptamat.2008.12.007 |
[11] | Gao Y, Sun Y, Yang Y, et al. (2015) Twin boundary spacing-dependent deformation behaviours of twinned silver nanowires. Mol Simulat 1–7. |
[12] | Luo Y, Wang Y, Wang Y, et al. (2009) Intrinsic Strengthening of Coherent Twin Boundaries in Copper. J Mater Sci Technol 25: 211. |
[13] | Jang D, Li X, Gao H, et al. (2012) Deformation mechanisms in nanotwinned metal nanopillars. Nat Nanotechnol 7: 594–601. doi: 10.1038/nnano.2012.116 |
[14] | Cao AJ, Wei YG, Mao SX (2007) Deformation mechanisms of face-centered-cubic metal nanowires with twin boundaries. Appl Phys Lett 90: 151909. doi: 10.1063/1.2721367 |
[15] | Wang YM, Sansoz F, LaGrange T, et al. (2013) Defective twin boundaries in nanotwinned metals. Nat Mater 12: 697–702. doi: 10.1038/nmat3646 |
[16] | Shute C, Myers B, Xie S, et al. (2011) Detwinning, damage and crack initiation during cyclic loading of Cu samples containing aligned nanotwins. Acta Mater 59: 4569–4577. doi: 10.1016/j.actamat.2011.04.002 |
[17] | Wang J, Misra A, Hirth J (2011) Shear response of Σ 3 {112} twin boundaries in face-centered-cubic metals. Phys Rev B 83: 064106. doi: 10.1103/PhysRevB.83.064106 |
[18] | Fang Q, Sansoz F (2017) Influence of intrinsic kink-like defects on screw dislocation – coherent twin boundary interactions in copper. Acta Mater 123: 383–393. doi: 10.1016/j.actamat.2016.10.032 |
[19] | Marquis E, Medlin D (2005) Structural duality of 1/3⟨111⟩ twin-boundary disconnections. Phil Mag Lett 85: 387–394. |
[20] | Brown J, Ghoniem N (2009) Structure and motion of junctions between coherent and incoherent twin boundaries in copper. Acta Mater 57: 4454–4462. doi: 10.1016/j.actamat.2009.06.009 |
[21] | Plimpton S (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys 117: 1–19. doi: 10.1006/jcph.1995.1039 |
[22] | Mishin Y, Mehl MJ, Papaconstantopoulos DA, et al. (2001) Structural stability and lattice defects in copper:Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63. |
[23] | Wen Y-H, Zhu Z-Z, Zhu R-Z (2008) Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects. Comput Mater Sci 41: 553–560. doi: 10.1016/j.commatsci.2007.05.012 |
[24] | Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool Modelling Simul Mater Sci Eng 18. |
[25] | Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Comput Mate Sci 2: 279–286. doi: 10.1016/0927-0256(94)90109-0 |
[26] | Wang J, Li N, Anderoglu O, et al. (2010) Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater 58: 2262–2270. doi: 10.1016/j.actamat.2009.12.013 |
[27] | Li L, An X, Imrich P, et al. (2013) Microcompression and cyclic deformation behaviors of coaxial copper bicrystals with a single twin boundary. Scripta Mater 69: 199–202. doi: 10.1016/j.scriptamat.2013.04.004 |
[28] | Zhu T, Gao H (2012) Plastic deformation mechanism in nanotwinned metals: an insight from molecular dynamics and mechanistic modeling. Scripta Mater 66: 843–848. doi: 10.1016/j.scriptamat.2012.01.031 |
[29] | Zhu Y, Wu X, Liao X, et al. (2011) Dislocation–twin interactions in nanocrystalline fcc metals. Acta Mater 59: 812–821. doi: 10.1016/j.actamat.2010.10.028 |
[30] | Li N, Wang J, Misra A, et al. (2011) Twinning dislocation multiplication at a coherent twin boundary. Acta Mater 59: 5989–5996. doi: 10.1016/j.actamat.2011.06.007 |
[31] | Li X, Wei Y, Lu L, et al. (2010) Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464: 877–880. doi: 10.1038/nature08929 |
[32] | Xu L, Xu D, Tu KN, et al. (2008) Structure and migration of (112) step on (111) twin boundaries in nanocrystalline copper. J Appl Phys 104: 113717. doi: 10.1063/1.3035944 |
[33] | Weertman J (1996) Dislocation based fracture mechanics: World Scientific. |