Citation: Małgorzata Wawrzyniak-Adamczewska, Małgorzata Wierzbowska, Juan José Meléndez. Effect of graphene substrate on the spectroscopic properties of photovoltaic molecules: role of the in-plane and out-of-plane π-bonds[J]. AIMS Materials Science, 2017, 4(1): 89-101. doi: 10.3934/matersci.2017.1.89
[1] | Rashid bin Mohd Yusoff A, Dai L, Cheng HM, et al. (2015) Graphene based energy devices. Nanoscale 7: 6881–6882. |
[2] | Ozyilmaz B, Saha S, Toh CT, et al. (2013) Photovoltaic cell with graphene-ferroelectric electrode. United States Patent Application US 14/385, 680. |
[3] | Loh KP, Tong SW, Wu J (2016) Graphene and graphene-like molecules: prospects in solar cells. J Am Chem Soc 138: 1095–1102. doi: 10.1021/jacs.5b10917 |
[4] | Reinert F (2013) Graphene gets molecules into order. Nat Phys 9: 321–322. doi: 10.1038/nphys2643 |
[5] | Colson J W, Woll AR, Mukherjee A, et al. (2011) Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332: 228–231. doi: 10.1126/science.1202747 |
[6] | Wierzbowska M, Wawrzyniak-Adamczewska M (2016) Cascade Donor-Acceptor Organic Ferroelectric Layers, between Graphene Sheets, for Solar Cell Applications. RSC Adv 6: 49988–49994. doi: 10.1039/C6RA07221F |
[7] | Wigner E, Bardeen J (1935) Theory of the Work Functions of Monovalent Metals. Phys Rev 48: 84. doi: 10.1103/PhysRev.48.84 |
[8] | Wawrzyniak-Adamczewska M,Wierzbowska M (2016) Separate-Path electron and hole transport across π-stacked ferroelectrics for photovoltaic applications. J Phys Chem C 120: 7748–7756. |
[9] | Ljungberg MP, Vänskä O, Koval P, et al. (2016) Charge transfer states at the interface of the pentacene monolayer on TiO2 and their influence on the optical spectrum. Available from: http://www.arXiv.org/abs/1610.01789. |
[10] | Masiak PM, Wierzbowska M (2017) Ferroelectric π-stacks of molecules with the energy gaps in the sunlight range. J Mater Sci [In Press]. |
[11] | Xu L, Yu Y, Lin J, et al. (2016) On-surface synthesis of two-dimensional imine polymers with a tunable band gap: a combined STM, DFT and Monte Carlo investigation. Nanoscale 8: 8568. doi: 10.1039/C5NR07663C |
[12] | Giannozzi P, Baroni S, Bonini N, et al. (2009) QUANTUM ESPRESSO: a modular and opensource software project for quantum simulation of materials. J Phys: Condens Matter 21: 395502. doi: 10.1088/0953-8984/21/39/395502 |
[13] | Perdew JP, Burke K, Ernzerhof M (1996) Generalized Gradient Approximation made simple. Phys Rev Lett 77: 3865–3868. doi: 10.1103/PhysRevLett.77.3865 |
[14] | Monkhorst HD, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13: 5188–5192. doi: 10.1103/PhysRevB.13.5188 |
[15] | Fletcher R (1987) Practical methods of optimization, 2nd. Eds., John Wiley & sons, Chichester, UK. |
[16] | Marini A, Hogan C, Grüning M, et al. (2009) YAMBO: an ab initio tool for excited state calculations. Comp Phys Comm 180: 1392–1403. doi: 10.1016/j.cpc.2009.02.003 |
[17] | Filippetti A, Spaldin NA (2003) Self-interaction-corrected pseudopotential scheme for magnetic and strongly-correlated systems. Phys Rev B 67: 125109. doi: 10.1103/PhysRevB.67.125109 |
[18] | Wierzbowska M, Majewski JA (2011) Forces and Atomic Relaxation in Density Functional Theory with the Pseudopotential Self-Interaction Correction. Phys Rev B 84: 245129. doi: 10.1103/PhysRevB.84.245129 |