Citation: A. G. Hernández-Torres, J. L. López-Miranda, I. Santos-Ramos, G. Rosas. Hydrogen generation performance of Al–20at%Ca alloy synthesized by mechanical alloying[J]. AIMS Materials Science, 2020, 7(2): 144-156. doi: 10.3934/matersci.2020.2.144
[1] | Chi J, Yu H (2018) Water electrolysis based on renewable energy for hydrogen production. Chinese J Catal 39: 390-394. doi: 10.1016/S1872-2067(17)62949-8 |
[2] | Boran A, Erkan S, Eroglu I (2018) Hydrogen generation from solid state NaBH4 by using FeCl3 catalyst for portable proton exchange membrane fuel cell applications. Int J Hydrogen Energ 44: 18915-18926. |
[3] | Zhang F, Zhao P, Niu M, et al. (2016) The survey of key technologies in hydrogen energy storage. Int J Hydrogen Energ 41: 14535-14552. doi: 10.1016/j.ijhydene.2016.05.293 |
[4] | Ancona MA, Antonioni G, Branchini L, et al. (2016) Renewable energy storage system based on a power-to-gas conversion process. Energ Procedia 101: 854-861. doi: 10.1016/j.egypro.2016.11.108 |
[5] | Kotowicz J, Bartela Ł, Węcel D, et al. (2017) Hydrogen generator characteristics for storage of renewably-generated energy. Energy 118: 156-171. doi: 10.1016/j.energy.2016.11.148 |
[6] | Czech E, Troczynski T (2010) Hydrogen generation through massive corrosion of deformed aluminum in water. International journal of hydrogen energy. Int J Hydrogen Energ 35: 1029-1037. doi: 10.1016/j.ijhydene.2009.11.085 |
[7] | Soler L, Macanás J, Muñoz M, et al. (2007) Synergistic hydrogen generation from aluminum, aluminum alloys and sodium borohydride in aqueous solutions. Int J Hydrogen Energ 32: 4702-4710. doi: 10.1016/j.ijhydene.2007.06.019 |
[8] | Mahmoodi K, Alinejad B (2010) Enhancement of hydrogen generation rate in reaction of aluminum with water. Int J Hydrogen Energ 35: 5227-5232. doi: 10.1016/j.ijhydene.2010.03.016 |
[9] | Flores-Chan JE, Bedolla-Jacuinde A, Patiño-Carachure C, et al. (2018) Corrosion study of Al-Fe (20 wt-%) alloy in artificial sea water with NaOH additions. Can Metall Quart 57: 201-209. doi: 10.1080/00084433.2017.1410942 |
[10] | Hurtubise DW, Klosterman DA, Morgan AB (2018) Development and demonstration of a deployable apparatus for generating hydrogen from the hydrolysis of aluminum via sodium hydroxide. Int J Hydrogen Energ 43: 6777-6788. doi: 10.1016/j.ijhydene.2018.02.087 |
[11] | Porciúncula CB, Marcilio NR, Tessaro IC, et al. (2012) Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH. Braz J Chem Eng 29: 337-348. doi: 10.1590/S0104-66322012000200014 |
[12] | Al Bacha S, Zakhour M, Nakhl M, et al. (2020) Effect of ball milling in presence of additives (Graphite, AlCl3, MgCl2 and NaCl) on the hydrolysis performances of Mg17Al12. Int J Hydrogen Energ 45: 6102-6109. doi: 10.1016/j.ijhydene.2019.12.162 |
[13] | Razavi-Tousi SS, Szpunar JA (2016) Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water. J Alloy Compd 679: 364-374. doi: 10.1016/j.jallcom.2016.04.038 |
[14] | Li F, Zhu B, Sun Y, et al. (2017) Hydrogen generation by means of the combustion of aluminum powder/sodium borohydride in steam. Int J Hydrogen Energ 42: 3804-3812. doi: 10.1016/j.ijhydene.2016.07.015 |
[15] | Xiao F, Yang R, Gao W, et al. (2020) Effect of carbon materials and bismuth particle size on hydrogen generation using aluminum-based composites. J Alloy Compd 817: 152800. doi: 10.1016/j.jallcom.2019.152800 |
[16] | Guan X, Zhou Z, Luo P, et al. (2019) Hydrogen generation from the reaction of Al-based composites activated by low-melting-point metals/oxides/salts with water. Energy 188: 116107. doi: 10.1016/j.energy.2019.116107 |
[17] | Qiao D, Lu Y, Tang Z, et al. (2019) The superior hydrogen-generation performance of multi-component Al alloys by the hydrolysis reaction. Int J Hydrogen Energ 44: 3527-3537. doi: 10.1016/j.ijhydene.2018.12.124 |
[18] | Yang B, Zhu J, Jiang T, et al. (2017) Effect of heat treatment on AlMgGaInSn alloy for hydrogen generation through hydrolysis reaction. Int J Hydrogen Energ 42: 24393-24403. doi: 10.1016/j.ijhydene.2017.07.091 |
[19] | Du BD, He TT, Liu GL, et al. (2018) Al-water reactivity of AlMgGaInSn alloys used for hydraulic fracturing tools. Int J Hydrogen Energ 43: 7201-7215. doi: 10.1016/j.ijhydene.2018.02.090 |
[20] | Liang J, Gao LJ, Miao NN, et al. (2016) Hydrogen generation by reaction of Al-M (M = Fe, Co, Ni) with water. Energy 113: 282-287. |
[21] | López-Miranda JL, Rosas G (2016) Hydrogen generation by aluminum hydrolysis using the Fe2Al5 intermetallic compound. Int J Hydrogen Energ 41: 4054-4059. doi: 10.1016/j.ijhydene.2016.01.012 |
[22] | Brisse A, Schefold J, Zahid M (2008) High temperature water electrolysis in solid oxide cells. Int J Hydrogen Energ 33: 5375-5382. doi: 10.1016/j.ijhydene.2008.07.120 |
[23] | Ilyukhina AV, Kravchenko OV, Bulychev BM (2017) Studies on microstructure of activated aluminum and its hydrogen generation properties in aluminum/water reaction. J Alloy Compd 690: 321-329. doi: 10.1016/j.jallcom.2016.08.151 |
[24] | Acar C, Dincer I (2019) Review and evaluation of hydrogen production options for better environment. J Clean Prod 218: 835-849. doi: 10.1016/j.jclepro.2019.02.046 |
[25] | Ho CY, Huang CH (2016) Enhancement of hydrogen generation using waste aluminum cans hydrolysis in low alkaline de-ionized water. Int J Hydrogen Energ 41: 3741-3747. doi: 10.1016/j.ijhydene.2015.11.083 |
[26] | Du Preez, SP, Bessarabov DG (2018) Hydrogen generation by the hydrolysis of mechanochemically activated aluminum-tin-indium composites in pure water. Int J Hydrogen Energ 43: 21398-21413. |
[27] | Du Preez SP, Bessarabov DG. (2019) The effects of bismuth and tin on the mechanochemical processing of aluminum-based composites for hydrogen generation purposes. Int J Hydrogen Energ 44: 21896-21912. doi: 10.1016/j.ijhydene.2019.06.154 |
[28] | Irankhah A, Fattahi SMS, Salem M (2018) Hydrogen generation using activated aluminum/water reaction. Int J Hydrogen Energ 43: 15739-15748. doi: 10.1016/j.ijhydene.2018.07.014 |
[29] | Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46: 1-184. doi: 10.1016/S0079-6425(99)00010-9 |
[30] | Saceleanu F, Vuong TV, Master ER, et al. (2019) Tunable kinetics of nanoaluminum and microaluminum powders reacting with water to produce hydrogen. Int J Energ Res 43: 7384-7396. |
[31] | Salazar M, Pérez R, Rosas G (2005) Environmental embrittlement characteristics of the AlFe and AlCuFe intermetallic systems. J New Mater Electrochem Syst 8: 97-100. |
[32] | Krasnowski M, Gierlotka S, Ciołek S, et al. (2019) Nanocrystalline NiAl intermetallic alloy with high hardness produced by mechanical alloying and hot-pressing consolidation. Adv Powder Technol 30: 1312-1318. doi: 10.1016/j.apt.2019.04.006 |
[33] | Naghiha H, Movahedi B, Asadabad MA, et al. (2017) Amorphization and nanocrystalline Nb3Al intermetallic formation during mechanical alloying and subsequent annealing. Adv Powder Technol 28: 340-345. doi: 10.1016/j.apt.2016.09.022 |
[34] | Antipina SA, Zmanovskii SV, Gromov AA, et al. (2017) Air and water oxidation of aluminum flake particles. Powder Technol 307: 184-189. doi: 10.1016/j.powtec.2016.12.009 |
[35] | Wang HW, Chung HW, Teng HT, et al. (2011) Generation of hydrogen from aluminum and water-effect of metal oxide nanocrystals and water quality. Int J Hydrogen Energ 36: 15136-15144. doi: 10.1016/j.ijhydene.2011.08.077 |
[36] | Gai WZ, Deng ZY (2014) Effect of trace species in water on the reaction of Al with water. Journal Power Sources 245: 721-729. doi: 10.1016/j.jpowsour.2013.07.042 |
[37] | Ma GL, Dai HB, Zhuang DW, et al. (2012) Controlled hydrogen generation by reaction of aluminum/sodium hydroxide/sodium stannate solid mixture with water. Int J Hydrogen Energ 37: 5811-5816. doi: 10.1016/j.ijhydene.2011.12.157 |
[38] | Xu S, Zhao X, Liu J (2018) Liquid metal activated aluminum-water reaction for direct hydrogen generation at room temperature. Renew Sust Energ Rev 92: 17-37. doi: 10.1016/j.rser.2018.04.052 |
[39] | Nie H, Schoenitz M, Dreizin EL (2012) Calorimetric investigation of the aluminum-water reaction. Int J Hydrogen Energ 37: 11035-11045. doi: 10.1016/j.ijhydene.2012.05.012 |
[40] | Belete TT, Van De Sanden MCM, Gleeson MA (2019) Effects of transition metal dopants on the calcination of CaCO3 under Ar, H2O and H2. J CO2 Util 31: 152-166. doi: 10.1016/j.jcou.2019.03.006 |
[41] | Liu H, Yang F, Yang B, et al. (2018) Rapid hydrogen generation through aluminum-water reaction in alkali solution. Catal Today 318: 52-58. doi: 10.1016/j.cattod.2018.03.030 |
[42] | Soler L, Candela AM, Macanás J, et al. (2009) Hydrogen generation by aluminum corrosion in seawater promoted by suspensions of aluminum hydroxide. Int J Hydrogen Energ 34: 8511-8518. doi: 10.1016/j.ijhydene.2009.08.008 |
[43] | Xiao F, Guo Y, Li J, et al. (2018) Hydrogen generation from hydrolysis of activated aluminum composites in tap water. Energy 157: 608-614. doi: 10.1016/j.energy.2018.05.201 |
[44] | Wang CC, Chou YC, Yen CY (2012) Hydrogen Generation from aluminum and aluminum alloys powder. Procedia Eng 36: 105-113. doi: 10.1016/j.proeng.2012.03.017 |