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1. Introduction

Let q > 1 be an integer. For any positive integer k, we define a special Kloosterman’s sum
S (m, n, k; q) as follows:

S (m, n, k; q) =
q∑′

a=1

e
(
mak + na

q

)
,

where m and n be any integers,
q∑′

a=1

denotes the summation over all 1 ≤ a ≤ q such that (a, q) = 1, a

denotes a · a ≡ 1 mod q, e(y) = e2πiy and i2 = −1.
If k = 1, then S (m, n, 1; q) = S (m, n; q) becomes the classical Kloosterman sum (see H. D. Kloost-

erman [1])

S (m, n; q) =
q∑′

a=1

e
(
ma + na

q

)
,

which plays a very important role in analytic number theory. Because of this, many mathematicians
have studied various properties of S (m, n; q) and obtained a series of important results. It is well known
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that, for a prime p,

S (1, n; p) = −2
√

p cos(θ(n)),

where the angles θ(n) is equi-distributed in [0, π] with respect to the Sato-Tate measure 2
π
sin2(θ)dθ. For

more details, see [2]. Thus the moments can be estimated by evaluating the corresponding integral

1
p − 1

p−1∑
m=1

|S (1,m; p)|2ℓ ≈ 22ℓpℓ
2
π

∫ π

0
cos2ℓ(θ) sinℓ(θ)dθ, (1.1)

for any positive integer ℓ. For example, H. Salié [3] proved that for any odd prime p, we have the
identity

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
a + ma

p

)∣∣∣∣∣∣∣
4

= 2p3 − 3p2 − 3p.

The proofs of this result can also be found in [4].
In 2011, using the elementary methods W. P. Zhang [5] proved a general result. For any integer n

with (n, q) = 1, he proved the identity

q∑
m=1

∣∣∣∣∣∣∣
q∑′

a=1

e
(
ma + na

q

)∣∣∣∣∣∣∣
4

= 3ω(q)q2ϕ(q)
∏
p∥q

(
2
3
−

1
3p
−

4
3p(p − 1)

)
,

where ϕ(q) is Euler function, ω(q) denotes the number of all different prime divisors of q, p∥q denotes
the product over all prime divisors of q with p | q and p2 ∤ q.

Perhaps the most essential conclusion is the upper bound estimate of S (m, n; q) (see S. Chowla [6]
or T. Estermann [7]). That is,

q∑′

a=1

e
(
ma + na

q

)
≪ (m, n, q)

1
2 · d(q) · q

1
2 ,

where d(q) denotes the Dirichlet divisor function, (m, n, q) denotes the greatest common factor of m, n
and q. For some other important results related to Kloosterman sums, see [8–13].

It seems that not much have been studied on the properties of S (m, n, k; q). In particular, we are
primarily interested in analogous result to (1.1). Here we are interested in evaluating the fourth power
mean

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
mak + a

p

)∣∣∣∣∣∣∣
4

, (1.2)

where p is a prime and k ≥ 3 is an integer. For k = 2, W. P. Zhang informed us that he had obtained an
exact calculating formula for (1.2) in an unpublished paper. If k ≥ 3, then we have not seen any related
results yet. This problem is important to the study of Kloosterman sums, and it is a further extension
of the classical Kloosterman sums problem.

The main purpose of this paper is using the elementary and analytic methods, and the properties
of the classical Gauss sums to study the calculating problems of (1.2), and give a sharp asymptotic
formula for it with k = 3. That is, we prove the following result:
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Theorem 1. Let p > 3 be an odd prime, then we have the asymptotic formula

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4

= 3p3 + O
(
p5/2

)
.

Remark: In Theorem 1, we only obtained an asymptotic formula for (1.2) with k = 3. Whether
there exists an asymptotic formula for (1.2) with k > 3 is still an open problem. In addition, whether
there exists an exact calculating formula for (1.2) with k = 3 also seems to be an interesting problem.

2. Some Lemmas

In this section, we need to give a few simple lemmas. They are necessary in the proof of our
theorem. Hereinafter, we shall use some knowledge of elementary number theory, analytic number
theory and the properties of the classical Gauss sums. Many contents can be found in many number
theory textbooks, such as [14] and [15]. First we prove the following:

Lemma 1. Let p be an odd prime. Then we have the identity

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2

=

{
p2 − p − 1 if 3 ∤ (p − 1),
p2 − 3p − 1 if 3 | (p − 1).

Proof. From the trigonometrical identity
p−1∑
m=0

e
(
mn
p

)
=

{
p if p | n,
0 if p ∤ n

(2.1)

we have
p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2

=

p−1∑
m=0

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2

− 1

= p
p−1∑
a=1

p−1∑
b=1

a3≡b3 mod p

e
a − b

p

 − 1 = p
p−1∑
a=1

p−1∑
b=1

a3≡1 mod p

e
(
b (a − 1)

p

)
− 1. (2.2)

If 3 ∤ (p − 1), then the congruence equation a3 ≡ 1 mod p has one solution a = 1. So from (2.1) and
(2.2) we have

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2

= p(p − 1) − 1 = p2 − p − 1. (2.3)

If 3 | (p − 1), then the congruence equation a3 ≡ 1 mod p has three distinct solutions, one of them is
a = 1. So from (2.1) and (2.2) we have

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2

= p(p − 1) − 2p − 1 = p2 − 3p − 1. (2.4)

Now Lemma 1 follows from (2.3) and (2.4).
□
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Lemma 2. Let p be an odd prime and χ be any non-principal character modulo p. Then we have the
identity ∣∣∣∣∣∣∣∣

p−1∑
m=1

χ(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

=


p ·

∣∣∣∣∣∣∣
p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1)

∣∣∣∣∣∣∣
2

if 3 | (p − 1) and χ = λ,

p2 ·

∣∣∣∣∣∣∣
p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1)

∣∣∣∣∣∣∣
2

otherwise,

where λ denotes any character of order three modulo p.

Proof. From the properties of the classical Gauss sums and the reduced residue system modulo p we
have

p−1∑
m=1

χ(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2

= τ(χ)
p−1∑
a=1

p−1∑
b=1

χ
(
a3 − b3

)
e
a − b

p


= τ(χ)

p−1∑
a=1

χ
(
a3 − 1

) p−1∑
b=1

χ3(b)e
b (a − 1)

p


= τ(χ)τ

(
χ3

) p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1) , (2.5)

where τ(χ) is the classical Gauss sum, defined be

τ(χ) =
p−1∑
t=1

χ(t)e
(

t
p

)
.

If 3 | (p − 1) and χ = λ, then |τ
(
λ3

)
| = 1. If χ , λ, then |τ(χ3)| = |τ(χ)| =

√
p. So from (2.5) we can

deduce Lemma 2. □

Lemma 3. Let f (x, y) be a polynomial with rational integer coefficients which is absolutely irreducible.
If N(p) denotes the number of solutions of the congruence

f (x, y) ≡ 0 mod p,

then for large primes p, we have the asymptotic formula

N(p) = p + O
(
p1/2

)
.

Proof. See [16, Theorem 1A] □
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Lemma 4. Let p be an odd prime, and

f (x, y) = y2(x2 + x + 1)2 + x2(y2 + y + 1)2 + xy(x2 + x + 1)(y2 + y + 1) − 3x2y2.

Then we have the asymptotic formula

p−1∑
a=1

p−1∑
b=1

f (a,b)≡0 mod p

1 = p + O
(
p1/2

)
.

Proof. It is clear that

f (x, y) = x4y2 + x2y4 + x3y3 + 3(x3y2 + x2y3) + x3y + xy3 + 4x2y2

+3(x2y + xy2) + x2 + y2 + xy

is a symmetric polynomial in x and y. Let f (x, y) have some factorization over any finite extension
of Fp. If any factorization of f (x, y) occurs, all factors are also symmetric in x and y. Hence the
possibilities are

f (x, y) =


(G2 +G3 +G4 +G5)(1 + H1)
(G2 +G3 +G4)(1 + H1 + H2)
(G2 +G3)(1 + H1 + H2 + H3)
G2(1 + H1 + H2 + H3 + H4),

where Hi and Gi are symmetric polynomials of two variables x and y of degree i. Let f (x, y) = (G2+G3+

G4 +G5)(1 + H1). It is not possible, because then G5H1 is the highest degree term x4y2 + x2y4 + x3y3.
Then the symmetric polynomial of degree 1, H1 must divide x4y2 + x2y4 + x3y3, i.e., x + y divides
x2y2(x2 + y2 + xy), which is not possible.
Similarly, G3H3 is not equal to x4y2 + x2y4 + x3y3, as it does not have 3 degree divisors, which is
symmetric. Hence f (x, y) = (G2 +G3)(1 + H1 + H2 + H3) is not possible.
Now let, f (x, y) = G2(1+H1 +H2 +H3 +H4). We have G2 = x2 + y2 + xy, which forces H4 = x2y2 and
G2H3 = 3(x3y2 + x2y3). Then x2 + y2 + xy divides x3y2 + x2y3, which is not possible for p > 3.
Hence the only case remaining is f (x, y) = (G2 +G3 +G4)(1 + H1 + H2). Then G2 = x2 + y2 + xy, and
G4H2 = x2y2(x2 + y2 + xy).

Case 1: G4 = a1x2y2 and H2 = b1(x2 + y2 + xy). We have

3(x3y2 + x2y3) = G4H1 +G3H2,

where H1 = a2(x + y), G3 = b2(x3 + y3) + b3(xy2 + yx2). Then we have b1b2 = 0 and b1b3 = 0. Now
b1 , 0. Hence b2 = b3 = 0. Also we have a2 = 3a−1

1 . This gives H1 = 3a−1
1 (x + y) and G3 = 0. Hence

we have the factorization

(x2 + y2 + xy + a1x2y2)(1 + 3a−1
1 (x + y) + b1(x2 + y2 + xy)) = f (x, y).

Then comparing with the degree 3-part of f (x, y), we get a contradiction.
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Case 2: G4 = a1xy(x2 + y2 + xy) and H2 = b1xy. Then we have

H2G2 +G3H1 +G4 = x3y + xy3 + 4x2y2,

where H1 = a2(x+y), G3 = b2(x3+y3)+b3(xy2+yx2). Then comparing the coefficients we get a2b2 = 0,
a1 + b1 + a2b2 + a2b3 = 1 and a1 + b1 + 2a2b3 = 4. Hence we must have b2 = 0, otherwise we have
a1 +b1 = 1 and a1 +b1 = 4, which is not possible. Hence we deduce G3 = b3(xy2 + yx2). Now consider

3(x3y2 + x2y3) = G4H1 +G3H2,

which gives a1a2 = 0 and b1b3 = 3, which implies a2 = 0 and b3 = 3b−1
1 . Hence we have the

factorization

(x2 + y2 + xy + 3b−1
1 (xy2 + x2y) + a1xy(x2 + y2 + xy))(1 + b1xy) = f (x, y).

Comparing the coefficients of degree 4-part we get a contradiction.
This completes the proof for irreducibility of f (x, y). Also such computations can be done in any

finite extension of Fp. Hence f (x, y) is absolute irreducible for any prime p > 3. Hence by Lemma 3,
we get the number of Fp-points on f (x, y) = 0 is equal to p + O(p1/2).

This proves Lemma 4. □

Lemma 5. Let p be an odd prime, then we have the asymptotic formula

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1)

∣∣∣∣∣∣∣
2

= 3p2 + O(p3/2).

Proof. From the orthogonality of the characters modulo p and Lemma 4 we have

∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1)

∣∣∣∣∣∣∣
2

= (p − 1)
p−1∑
a=1

p−1∑
b=1

(a3−1)(a−1)3
≡(b3−1)(b−1)3

mod p

1

= (p − 1)
p−1∑
a=1

p−1∑
b=1

(a+a)3
−3(a+a)2

≡(b+b)3
−3(b+b)2

mod p

1

= (p − 1)
p−1∑
a=1

p−1∑
b=1

(a−b)(ab−1) f (a,b)≡0 mod p

1

= (p − 1)2 + (p − 1)2 + (p − 1)
p−1∑
a=1

p−1∑
b=1

f (a,b)≡0 mod p

1 − (p − 1)
p−1∑
a=1

f (a,a)≡0 mod p

1
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−(p − 1)
p−1∑
a=1

f (a,a)≡0 mod p

1 + O(p) = 3p2 + O(p3/2).

This proves Lemma 5.
□

3. Proof of the Theorem 1

In this section, we will provide the proof of our main theorem. First from the orthogonality of the
characters modulo p we have

∑
χ mod p

∣∣∣∣∣∣∣∣
p−1∑
m=1

χ(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

= (p − 1)
p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4

. (3.1)

On the other hand, if 3 ∤ (p − 1), then note that for any non-principal character χ mod p, we have
|τ(χ)| = |τ(χ3)| =

√
p, and using Lemma 1, Lemma 2 and Lemma 5 we have

∑
χ mod p

∣∣∣∣∣∣∣∣
p−1∑
m=1

χ(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣
p−1∑
m=1

χ0(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

+
∑
χ mod p
χ,χ0

∣∣∣∣∣∣∣∣
p−1∑
m=1

χ(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

= (p2 − p − 1)2 + p2
∑
χ mod p
χ,χ0

∣∣∣∣∣∣∣
p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1)

∣∣∣∣∣∣∣
2

= (p2 − p − 1)2 + p2
∑
χ mod p

∣∣∣∣∣∣∣
p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1)

∣∣∣∣∣∣∣
2

− p2

∣∣∣∣∣∣∣
p−1∑
a=1

χ0

(
a3 − 1

)∣∣∣∣∣∣∣
2

= (p2 − p − 1)2 + 3p3(p − 1) − p2(p − 1)2 + O
(
p7/2

)
= 3p3(p − 1) + O

(
p7/2

)
. (3.2)

If 3 | (p − 1), let λ be any three-order character modulo p, then |τ
(
λ3

)
| = 1 and∣∣∣∣∣∣∣

p−1∑
a=1

λ
(
a3 − 1

)
λ

3
(a − 1)

∣∣∣∣∣∣∣ ≪ √p. (3.3)

From estimate (3.3), Lemma 1, Lemma 2, Lemma 5 and the method of proving (3.2) we also have the
asymptotic formula

∑
χ mod p

∣∣∣∣∣∣∣∣
p−1∑
m=1

χ(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

=

∣∣∣∣∣∣∣∣
p−1∑
m=1

χ0(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2
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+p

∣∣∣∣∣∣∣
p−1∑
a=1

λ
(
a3 − 1

)
λ

3
(a − 1)

∣∣∣∣∣∣∣
2

+ p

∣∣∣∣∣∣∣
p−1∑
a=1

λ
(
a3 − 1

)
λ3 (a − 1)

∣∣∣∣∣∣∣
2

+
∑
χ mod p
χ,χ0,λ,λ2

∣∣∣∣∣∣∣∣
p−1∑
m=1

χ(m)

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
2∣∣∣∣∣∣∣∣

2

= (p2 − 3p − 1)2 + p2
∑
χ mod p
χ,χ0,λ,λ2

∣∣∣∣∣∣∣
p−1∑
a=1

χ
(
a3 − 1

)
χ3 (a − 1)

∣∣∣∣∣∣∣
2

+ O(p2)

= (p2 − 3p − 1)2 + 3p3(p − 1) − p2(p − 1)2 + O
(
p7/2

)
= 3p3(p − 1) + O

(
p7/2

)
. (3.4)

Combining (3.1), (3.2) and (3.4) we may immediately deduce the asymptotic formula

p−1∑
m=1

∣∣∣∣∣∣∣
p−1∑
a=1

e
(
ma3 + a

p

)∣∣∣∣∣∣∣
4

= 3p3 + O
(
p5/2

)
.

This complete the proof of Theorem 1.
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