In this paper, a stochastic SIB(Susceptible-Infected-Vibrios) cholera model with saturation recovery rate and Ornstein-Uhlenbeck process is investigated. It is proved that there is a unique global solution for any initial value of the model. Furthermore, the sufficient criterion of the stationary distribution of the model is obtained by constructing a suitable Lyapunov function, and the expression of probability density function is calculated by the same condition. The correctness of the theoretical results is verified by numerical simulation, and the specific expression of the marginal probability density function is obtained.
Citation: Buyu Wen, Bing Liu, Qianqian Cui. Analysis of a stochastic SIB cholera model with saturation recovery rate and Ornstein-Uhlenbeck process[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 11644-11655. doi: 10.3934/mbe.2023517
In this paper, a stochastic SIB(Susceptible-Infected-Vibrios) cholera model with saturation recovery rate and Ornstein-Uhlenbeck process is investigated. It is proved that there is a unique global solution for any initial value of the model. Furthermore, the sufficient criterion of the stationary distribution of the model is obtained by constructing a suitable Lyapunov function, and the expression of probability density function is calculated by the same condition. The correctness of the theoretical results is verified by numerical simulation, and the specific expression of the marginal probability density function is obtained.
[1] | D. S. Merrell, S. M. Butler, F. Qadri, N. A. Dolganov, A. Alam, M. B. Cohen, et al., Hostinduced epidemic spread of the cholera bacterium, Nature, 417 (2002), 642–645. https://doi.org/10.1038/nature00778 doi: 10.1038/nature00778 |
[2] | S. Sharma, F. Singh, Bifurcation and stability analysis of a cholera model with vaccination and saturated treatment, Chaos Solit. Fract., 146 (2021), 110912. https://doi.org/10.1016/j.chaos.2021.110912 doi: 10.1016/j.chaos.2021.110912 |
[3] | C. Ratchford, J. Wang, Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment, Math. Biosci. Eng., 17 (2019), 948–974. https://doi.org/10.3934/mbe.2020051 doi: 10.3934/mbe.2020051 |
[4] | D. Posny, J. Wang, Z. Mukandavire, C. Modnak, Analyzing transmission dynamics of cholera with public health interventions, Math. Biosci., 264 (2015), 38–53. https://doi.org/10.1016/j.mbs.2015.03.006 doi: 10.1016/j.mbs.2015.03.006 |
[5] | N. Bai, C. Song, R. Xu, Mathematical analysis and application of a cholera transmission model with waning vaccine-induced immunity, Nonlinear Anal. Real World Appl., 58 (2021), 103232. https://doi.org/10.1016/j.nonrwa.2020.103232 doi: 10.1016/j.nonrwa.2020.103232 |
[6] | Z. Liu, Z. Jin, J. Yang, J. Zhang, The backward bifurcation of an age-structured cholera transmission model with saturation incidence, Math. Biosci. Eng., 19 (2019), 12427–12447. https://doi.org/10.3934/mbe.2022580 doi: 10.3934/mbe.2022580 |
[7] | K. Yamazaki, C. Yang, J. Wang, A partially diffusive cholera model based on a general second-order differential operator second-order differential operator, J. Math. Anal. Appl., 501 (2021), 125181. https://doi.org/10.1016/j.jmaa.2021.125181 doi: 10.1016/j.jmaa.2021.125181 |
[8] | D. Baleanu, F. A. Ghassabzade, J. J. Nieto, A. Jajarmi, On a new and generalized fractional model for a real cholera outbreak, Alex. Eng. J., 61 (2022), 9175-9186. https://doi.org/10.1016/j.aej.2022.02.054 doi: 10.1016/j.aej.2022.02.054 |
[9] | X. Zhou, X. Shi, J. Cui, Stability and backward bifurcation on a cholera epidemic model with saturated recovery rate, Math. Method. Appl. Sci., 40 (2017), 128–306. https://doi.org/10.1002/mma.4053 doi: 10.1002/mma.4053 |
[10] | Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, Dynamical behavior of a stochastic epidemic model for cholera, J. Franklin I., 356 (2019), 7486–7514. https://doi.org/10.1016/j.jfranklin.2018.11.056 doi: 10.1016/j.jfranklin.2018.11.056 |
[11] | X. Zhou, X. Shi, M. Wei, Dynamical behavior and optimal control of a stochastic mathematical model for cholera. Chaos Solit. Fract., 156 (2022), 111854. https://doi.org/10.1016/j.chaos.2022.111854 |
[12] | Q. Liu, D. Jiang, T. Hayat, A. Alsaedi, B. Ahmad, Stationary distribution of a stochastic cholera model between communities linked by migration, Appl. Math. Comput., 373 (2020), 125021. https://doi.org/10.1016/j.amc.2019.125021 doi: 10.1016/j.amc.2019.125021 |
[13] | Y. Zhu, L. Wang, Z. Qiu, Dynamics of a stochastic cholera epidemic model with L$\acute{e}$vy process, Phys. A, 595 (2022), 127069. https://doi.org/10.1016/j.physa.2022.127069 doi: 10.1016/j.physa.2022.127069 |
[14] | X. Zhang, H. Peng, Stationary distribution of a stochastic cholera epidemic model with vaccination under regime switching, Appl. Math. Lett., 102 (2020), 106095. https://doi.org/10.1016/j.aml.2019.106095 doi: 10.1016/j.aml.2019.106095 |
[15] | Z. Shi, D. Jiang, Dynamical behaviors of a stochastic HTLV-I infection model with general infection form and Ornstein-Uhlenbeck process, Chaos Solit. Fract., 165 (2022), 112789. https://doi.org/10.1016/j.chaos.2022.112789 doi: 10.1016/j.chaos.2022.112789 |
[16] | B. Zhou, D. Jiang, B. Han, T. Hayat, Threshold dynamics and density function of a stochastic epidemic model with media coverage and mean-reverting Ornstein-Uhlenbeck process, Math. Comp. Simul., 196 (2022), 15–44. https://doi.org/10.1016/j.matcom.2022.01.014 doi: 10.1016/j.matcom.2022.01.014 |
[17] | Q. Liu, Stationary distribution and probability density for a stochastic SISP respiratory disease model with Ornstein-Uhlenbeck process, Commun. Nonl. Sci. Numer. Simul., 119 (2023), 107128. https://doi.org/10.1016/j.cnsns.2023.107128 doi: 10.1016/j.cnsns.2023.107128 |
[18] | Y. Cai, J. Jiao, Z. Gui, Y. Liu, W. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009 |
[19] | Q. Liu, Stationary distribution and extinction of a stochastic HLIV model with viral production and Ornstein-Uhlenbeck process, Commun. Nonl. Sci. Numer. Simul., 119 (2023), 107111. https://doi.org/10.1016/j.cnsns.2023.107111 doi: 10.1016/j.cnsns.2023.107111 |
[20] | X. Zhang, R. Yuan, A stochastic chemostat model with mean-reverting Ornstein-Uhlenbeck process and Monod-Haldane response function, Appl. Math. Comput., 394 (2021), 125833. https://doi.org/10.1016/j.amc.2020.125833 doi: 10.1016/j.amc.2020.125833 |
[21] | Y. Zhou, D. Jiang, Dynamical behavior of a stochastic SIQR epidemic model with Ornstein-Uhlenbeck process and standard incidence rate after dimensionality reduction, Commun. Nonl. Sci. Numer. Simul., 116 (2023), 106878. https://doi.org/10.1016/j.cnsns.2022.106878 doi: 10.1016/j.cnsns.2022.106878 |
[22] | X. Mao, Stochastic Differential Equations and Applications, 2nd ed, Chichester Horwood, UK, 2008. https://www.sciencedirect.com/book/9781904275343/stochastic-differential-equations-and-applications |
[23] | N.H. Du, G. Yin, Conditions for permanence and ergodicity of certain stochastic predator-prey models, J. Appl. Prob., 53 (2016), 187–202. https://doi.org/10.1017/jpr.2015.18 doi: 10.1017/jpr.2015.18 |