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Abstract: In this paper, a stochastic SIB(Susceptible-Infected-Vibrios) cholera model with saturation
recovery rate and Ornstein-Uhlenbeck process is investigated. It is proved that there is a unique global
solution for any initial value of the model. Furthermore, the sufficient criterion of the stationary dis-
tribution of the model is obtained by constructing a suitable Lyapunov function, and the expression
of probability density function is calculated by the same condition. The correctness of the theoreti-
cal results is verified by numerical simulation, and the specific expression of the marginal probability
density function is obtained.
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1. Introduction

Cholera is an acute intestinal infectious disease caused by Vibrio cholerae, which is mainly trans-
mitted through unclean water and food (see [1]). According to news reports, more than 20 countries
and regions (southwestern Cameroon, Afghanistan, the Republic of Mozambique, northern Iraq, Haiti,
Malawi, etc.) have experienced or are experiencing cholera epidemics in the past two years. Therefore,
many scholars have studied the cholera transmission model, such as differential dynamics system [2-5],
age-structured transmission model [6], reaction-convection-diffusion equations [7], generalized frac-
tional model [8].
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In [9], the scholars investigated the following SIB cholera model:

SB
S')=A-B———-w1S +yl+c

K+ B b+ 1’
v o SB 1 (1.1)
I(t)—BK+B ( +y+a)l o
B'(t) = nl — u,B.

where S (¢) and /(¢) denote the numbers of susceptible individuals and infected individuals at time t,
respectively. B(f) denotes the concentration of vibrios in contaminated water at time t. Besides, The
parameter A is the recruitment rate, and parameter y; is the natural human death rate. The parameters
B is the transmission coeflicients of environment-to-human pathways. The parameter K is the concen-
tration of vibrios in contaminated water that yields 50% chance of catching cholera. The parameter
v is the recovery rate of infected individuals. ¢ is the maximum recovery per unit of time, and b is
the infected size at 50% saturation. « is the disease-induced human death rate. The parameter 7 is
the contribution rate of each infected individual to the concentration of vibrios, and u, is the net death
rate of vibrios. All parameters are usually also assumed to be nonnegative. For system (1.1), the basic
reproduction number is defined by

SobBn

R = )
0 Kuy(rb + buy + ba + ¢)

where S = ;%' In [9], the scholars obtained that if Ry < 1, model has only a disease-free equilibrium
Ey = (S0,0,0) that is locally asymptotically stable; if Ry > 1, system (1.1) has a unique endemic
equilibrium E* = (§*,I", B") that is locally asymptotically stable.

In the real environment, the spread of cholera is disturbed by random factors, so many scholars have
proposed a kind of stochastic differential equation cholera spread model with random perturbation,
such as [10, 11], stochastic cholera model between communities linked by migration [12], stochastic
model with Lévy process [13], stochastic model under regime switching [14]. At present, the O-U
process is popular in various random interference channels (see [15—18]). Therefore, in order to reveal
the impact of environmental noise on the transmission rate, we assume that it is a random variable and
satisfies the following form [19-22]:

dy = 1(y —y(0))dt + 01dB(t), dc = (¢ — c())dt + o,dB;(1).

where ¥, ¢ are measure the long-time mean levels of the infection rates vy, ¢; 4;,(i = 1, 2) are the speeds
of reversion. B;(¢) are independent standard Brownian motion parameters defined on a complete prob-
ability space (QQ, ¥, P), and parameter o; > 0 (i = 1, 2) represents the intensity of B;(f). All parameters
are usually also assumed to be nonnegative. In order to discuss the need for positivity of the stochas-
tic model, variable max{y(¢), 0}, max{c(¢), 0} is used instead of variable y(¢), c(t) in [19]. Then, we
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investigated the following stochastic SIB model with O-U process:

S'(H=A —ﬂ% — 1S + max{y(r), 0}1 + max{c(z), O}ﬁ,
SB 1

I'(t) = ﬁm — (u; + max{y(?), 0} + )l — max{c(¢), O}m, (12

B'(t) = nl — 1»B,

dy = Li(y — y(9)dt + o1dB, (1),

dc = A,(¢ = c(1))dt + 0,dBx(2).

Throughout this paper, we define R? = {(xy, x, x3) : x; > 0,7 = 1,2, 3}. For an integrable function
f(t) defined on [0, c0), define (f(¢)) = % fot f(s)ds. For the numbers a and b, we define a V b =
max{a, b},a A b = min{a, b}.

In the next section, we verify the existence and uniqueness of a global solution of the model (1.2)
with any initial value. In Section 3, the criterion on the ergodicity and existence of unique stationary
distribution for any solution of model (1.2) is stated and proved. In Section 4, We obtain the probability
density function of model (1.2) around the positive equilibrium point E*. In Section 5, the numerical
examples are carried out to illustrate the main theoretical results.

2. Existence and uniqueness of a global solution

In this section, we will discuss the existence and uniqueness of a global solution for model (1.2).

Theorem 2.1. For any initial value (S (0), 1(0), B(0),¥(0), c(0)) € R? x R?, model (1.2) has a unique
global solution (S (1), I(t), B(t), y(t), c(t)). That is, solution (S (), 1(t), B(t), (1), c(t)) is defined for all
t > 0 and remains in R x R? with probability one.

Proof. Since the coefficients of model (1.2) satisfy the local Lipschitz conditions, for any initial value
(5(0), 1(0), B(0), ¥(0), c(0)) € R? x R2, there exists a unique local solution (S (), I(t), B(t), y(t), c(t)) on
t € [0, 7,.), where 7, denotes the explosion time. To show this solution is global, we only need to prove
that 7, = oo a.s.. To this end, let ky > 1 be sufficiently large such that S (0), (0), B(0), ¢”® and e“©all
lie within the interval [é, ko]. For each integer k > k, define the stopping time

1
7, = inf{z € [0, 7,) : min{S (¢), I[(r), B(t), e’?, &P} < or max{S (1), I(1), B(t), e"”, eV} > k},

where throughout this paper, we set inf () = oo (as usual () represents the empty set). Clearly, 74 is
increasing as k — oo. Let 7o, = limy_,, 74, Whence 7., < 7, a.s. If 7, = oo a.s. is not false, then 7, = oo
a.s. and (S (), (1), B(2), y(t),c(t)) € R? x R* a.s. for all 7 > 0. That is to say, if we want to finish the
proof, we only need to show 7., = co a.s. If this assertion is not true, then there is a pair of constants
T > 0and € € (0, 1) such that

pPlte < T} > €.

Consequently, there exists an integer k; > ko such that

plri <T}>¢e forallk> k. 2.1)
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Define a Lyapunov function
1
V=S-1-InS+I-1-In/+B-1 —lnB+§(72+c2).
By calculating, we have

1
LV =A—-w(S+1)—al +nl —u,B - E[nl — 1 B]

1

- 7[131( B — (uy + max{y(1),0} + o)l - max{c(t),O}b—”]

1 SB 1
- —[A ,8— — 1S + max{y(?), 0} + max{c(¢),0}——]

1 .
+ 5(a% +03) + L Y(F — ) + ¢(C - ¢)

1 1
<A+l +p + +|7/|+a/+|c|5+ E(O-%+O€)
+’BK —p it Ary(y —y) + ¢(C — o).
By model (1.2), we have
d(S +1
(dt ):A—,ul(S+I)—aISA—,ul(S+I). (2.3)

This implies that
A
S@0)+10), if SO)+10)>—,
M1 Y
S+1< A A <N,
—, ifSO0)+10) < —,
M H
where N = maX{ ,S(0) + 1(0)}.
B'(t) = nl — 2B < N — 1B,

which implies that

A
B(), if BO)> —L,
M2 S
B< <N
<14 A s N,
A B0y < 21,
A2 Hif

where N = maX{ B(O)} Then,

LV <A+nN + iy + 2u + @ + B——= + sup{lyl + L1y(¥ — )}
K+N— yer (2.4)

1
+ (0'1 + 0'2) + supflc|= + (€ = ¢)} =
ceR b
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Therefore, integrating both sides of (2.4) from O to 7x A T = min{7, T} for any k > k; and then
taking the expectations result in

EVIS (@ AT), Ity AT), Bty AT), y(ti AT),c(ti AT))
< V(§(0),1(0), B(0),¥(0),c(0)) + KE(ty A T).
Thus,
BVIS(@ AT), [(ti AT), Btk AT), y(ti AT), c(7x A T))
<V(S(0), 1(0), B(0),¥(0), c(0)) + KT.
Set Q = {1y < T} for k > ki, and in view of (2.1), we get P(€;) > &. Notice that for every w €

Qy, there exists S (1, w), (14, W), B(ty, w), y(Tk, w) or (14, w), which equals either k or % Therefore,
V(S (1, w), (T, ), B(Tg, ), Y(Ti, ), c(Ty, w)) 1s no less than either

(2.5)

In® k 1 In® k
(lc—l—lnk)A“T or (E—1+lnk)/\n7.

Thereby, we can obtain

2
V(S (1, w), (T4, W), B(Tg, ), Y(Tp, ), (T, w)) = [k — 1 —Ink] A [— —1+1nk]A %

By (2.5), if follows that
V(§(0),1(0), B(0),¥(0),c(0)) + KT
ZE[IQk ((L))V(S (Tk? (l)), I(Tk’ (U), B(Tk’ (l)), '}’(Tk, CL)), C(Tk’ (1)))]
1 In® k
Selk—1—InkJ A~ — 1 +1Ink] A =2,
k 2
where I, denotes the indicator function of €. Letting k — oo, then one can get that
oo > V(§(0), 1(0), B(0),¥(0),c(0)) + KT = o0
which is a contradiction, and then we derive 7, = co0. The proof is complete. O

Define the set I' as follows:
A A
= {(S,1,B,y,c) eR3xR*: S+ 1< — B< —L)
Hi M2

Corollary 2.2. For any initial value x(0) = (S(0), 1(0), B(0), ¥(0), c(0)) € Ri x R? the global solution
x(t) = (S(1), 1(2), B(t), y(t), c(t)) of model (1.2) ultimately enters into region I" with probability one as
t — oo, and when x(0) € T, then x(t) € I" with probability one for all t > 0.

3. Stationary distribution

In this section, we study the existence of the stationary distribution of model (1.2). Define

RS = AbBn
Kipiolbu + 7 + @) + &+ 5712 + 2]
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11649

Theorem 3.1. Assume that Ry > 1, and then model (1.2) has at least one stationary distribution and

ergodic property.

Proof. Define the Lyapunov function as follows:
V(S,1,B,y,c) = MV(S,1,B) +

where

Vi=—InI—-c¢;InS —czlnB+C3B+cllf—13,

A
V,=—InS —-InB-In(—-S§S -1+ .
Hi

By calculating, we have

Vo(S,1,B,v,c),

M2
2 +y?

2

1 SB I
LV, =- 7[,8[( - (1 + max{y(), 0} + @)l — max{c(¢), O}W]
1[A ,BSB S + max{y(¢), 0} + max{c(¢), 0} d ]
-c—=[A-B—— - max , x{c(7), 0} ——
'S K+B M Y b+1
1
+ clKi[nI — 2Bl — e[l — Bl + c3[nl — o Bl
H2 B
<-p 5B ! A (B+K)+ + + K +c3nl
—B———— —Cyn——c|j— —¢ c c c c
< I(K + B) 2773 lS 3M2 1M1 2M2 3M2 37
max{c(), 0} B
o+ maxty (0,0 + )+ POy g B, Ki “lnl - a8

< — 4yBeanciAcspiy + ity + oty + c3pnK +

Hvo
+ (@) VvO0)+ Y2(D) + ¢ B nl + c3nl
b K,Uz

where y(#) = (1) — ¥, y2(£) = ¢(r) — ¢ and

(u1+7+a)+g

o = ApBn o = Apn o= ApBn
Kidwo ™ Kpysd' ™ Ky
We have the following stochastic differential equation:
dy,' = —/liyi(f)dl + o dBi(r), i=1,2.
vi(?) has the ergodic property and density as follows:
2
A -5 .
wi(x) = VA e ,xeR, i=1,2.
Vo
. > VI o
xVO)m(x)dx = X e %idx= . 3.1
Im( )7i(x) fo Vo N (3.1

Mathematical Biosciences and Engineering
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A _ ¢ (7 Bn
LV, < - +(,ul+y+a+—)+ )+01 I+c3n1
Kuipy 2\/_ \/_1 b\/_

+ (@ V0) - f x7ty (x)dx) + — ((yz(t)VO) f x7t(x)dx)
0 0

71 Ry — 1) + cl'B—nI + c3nl
Ky,

:—[/11+y+a/+b+2\/_\/_1 b\/_
+ (@ VvV 0) - f X7ty (x)dx) + 5((yz(t) vO0) - f X7ty (x)dx),
0 0

and
LV = - S[gl — juB) - 1A - B2 _ s + maxiy(s), 0} + max(e(r), 0)——]
=——[nl - - - max max{c S
2 B’I M2 S K+B Hi b 7
1
+m[14—(ﬂ1+0/)I—/JlS]+/117(7—7)+/120(5—C)+§(0'1+0'2)
H1
A 1 al An
< _pZ_ - 2 L/ B
S-5 73 MA—S—I+IJ2+ 'ul+ﬁKﬂz,u1+A77 2(0'1"‘0'2)
+ 4y(y —y) + Aac(C — o).
Then,
LV <M{—[ +7+a+ S+ ——( T T R =D+ e, PLr 4 el
b 2\/_ \/_1 bV, Ku,
+((y1(f)V0)—f x7ty(x)dx) + — ((yz(l‘)VO)—f x7tp(x)dx)}
0 0
_____ ¢ ) el (3.2)
5 3 %—S—I+ﬂ2+ M1+ Kioty + An 2(0'1+0'2)
+ 4y(y —y) + (€ - o)
(o) M (o)
::F(S,I,B,)/,c)+M((y1(l)V())—f xﬁl(x)dx)+z((y2(t)VO)—f X7t (x)dx),
0 0
where
0'1
F(S,I,B,y,c)=—M[m +y+a+ — 4 )]( - D+u+2
al An,B oi+os A

c1p
+ (=—1 +c3)Mnl - + +
(K,Uz )M L8 —1 Kup+An 2 \)

I 1 1 1 1
—n—— =A1y> — =t + sup {(4v(F — =y) + (@ — =)
Ui 1y 7 Nea (y,L-)rERz{ 1Yy 27) »c(C 2C)}

Define the bounded closed set
1

A
U={(S,I,B,y,c)ellS +1 < — - &, 8<S£<I€<B|7|<—|c|< }

Hi

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11644—-11655.
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where € are small enough positive constants, which will be determined later .
For convenience, we divide R? x R?\U into six domains.

U =((S,1,B,y,c) e R} xR%,0 < S < &},
U, ={(S,1,B,y,c) eR} xR*,0 < I < &},
Us ={(S,I,B,y,c) e R} xR%,0< B< &, 1> ¢},

A
Uy ={((S,1,B,y,c) €R} xR%,S + > — — &%, 1 > &},
H

Us ={((S,1,B,y,c) e R? xR?, |y| > -},

Us ={(S,1,B,y,c) € RI xR |c| > —}.

M=o =

We will prove that F(S,1,B,y,c) < —1 on Ri x R?\U, which is equivalent to show it on the above
seven domains.
Case 1. If (S, 1, B, vy, c) € Uy, we can obtain

A A
F(S,1,B,y,¢) < _§+G1 < -—+Gy,
&

where
Gi =M +y+a+ 5+ ——(Z RS - 1)+(—’81+c3)M771+2,ul
b R e K
bt — 2o sup My - 2y) + dac(e - 2o,
Kpopy + An - 2 (7,¢)T €R2 2 2

We choose a constant £ > 0 small enough such that —% + G1 £ —1, and then it follows that
F(S,I,B,y,c) < -1 forall (S,I,B,y,c)e U,. 3.3)

Case 2. If (S, 1, B,v,c) € U,, we can obtain

F(S,1,B,y,c) s(cli + c3)Mnl + G, < (c1i + c3)Mne + G,
K, Ky,

where
G, = — Mu +y+a+ 2L (RS 1)+1(0'2+0'2)
- _ | el - —
2 \/_ \/_1 b\/_ 0 20! 2
An,B _ 1
+ 22U+ + —————— + A — =Y+ 4 - —0)}.
M1+ o Kiogt, + A7 (y,i)liERZ{ 1Yy 2)’) »c(C 20)}

Choose constants M > 0 large enough and £ > 0 small enough such that (clKLN2 + c3)Mne + G, < -1,
and then it follows that

F(S,I,B,y,c) < -1 forall (S,I,B,y,c)e€ U,. 3.4)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11644—-11655.
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Case 3. If (S, 1, B,y,c) € Uz, we can obtain

1
B g2

Choose a constant £ > 0 small enough such that —1 + G, < -1, and then it follow that

F(S,I,B,y,c) < -1 forall (S,I,B,y,c)e€ Us.

Case 4. If (S, 1, B,v,c) € Uy, we can obtain

1
F(S,I,B,’)/,C) < _Aa— +G] < —CZE +Gl.
I g2

Choose a constant € > 0 small enough such that —% + G, < —1, and then we have

F(S,1,B,y,c) <—1 forall (S,I,B,y,c)e U,.

CaSC 5. If (S,I, B, )/,C) € Us, we can Obtall’l
F ,1,D,, I + _— .

Choose a constant &€ > 0 small enough such that —21? + G < —1, and then we get
F(S,I,B,y,c) < -1 forall (S,I,B,y,c)e€ Us.

Case 6. If (5,1, B, vy, c) € Ug, we can obtain

1, 1

Choose a constant &€ > 0 small enough such that —ﬁ + G < —1, and then we get
F(S,1,B,y,c) <—-1 forall (S,I,B,y,c)e Us.
Finally, from (3.3)-(3.8) we obtain
F(S,I,B,y,c) < -1 forall (S,I,B,y,c) € R} xR*\U.

Define
V(S,I,B,y,c)=V(S,I,B,y,¢) - V(S° I°,B°,¥°, "),

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

where (59, 1°, B, ", ¢°) is the point in the interior R? x R?, such that V(S, I, B, y, ¢) will be minimized.

By (3.2), we have

LV <F(S,1,B,y,c) + M((y;(t) vV 0) — foo x7t1(x)dx) + %((yg(t) v 0) - f‘” X7ty (x)dx).
0 0

(3.10)

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11644—-11655.
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Taking the mathematical expectation and Itd’s integral of (3.10), for any initial value
(§(0),1(0), B(0), ¥(0), c(0)), one has

- EV(S (1), (1), B(¢), (1), c(1))
- t

t 0
+ M[E(l f (yv1 vV 0)ds — foo x7t(x)dx) + lE(l f (y2 vV 0)ds — f‘” X7ty (x)dx)].
t Jo 0 bty 0

By the ergodicity of y;(i = 1,2) and the strong law of large numbers, one has

1 [ 0
Iim E[— f (vi v 0)ds — f x7t;(x)dx]
oo 1 o 0

0 0 (3.12)
:E[f xi(x)dx] — f xit(x)dx =0 a.s.
0 0
By (3.12), we have the inferior limit of (3.11),
0 <liminf EV(S(0), 1(0), B(0), ¥(0), c(0))

t—00 t

+ lim inf — ! f E(F (S (s), I(s), B(s),y(s), c(s)))ds (3.13)
0

[—0o0

= lign inf % f E(F(S(s),1(s), B(s),y(s), c(s)))ds.

0
From (3.9), we have

liminf — ! f E(F(S (s),I(s), B(s),v(s), c(s)))ds
0

t—00

1
= 11£n inf 7 f E(F(S (), 1(s), B(s), y(5), c($))L(s(5),1(5).B(s).(s).cspyeuds
—00 0

1 !
+ liminf — f E(F(S (5), 1(s), B(s), Y(8), () (55),1(5),B(5)p(s),c(s)e®@3 xr2r0)dS (3.14)
0

t—0o

... 1 1
<F 11m1nf; I) 1(S(x>I(s)B(s)y(s)c(s»eUds+hmmf p I} l(s(s),l(s),B(s),y(s),c(s))e(RixRZ\U)dS

t—oo t—o0

1 !
<-1+ (F + 1) liminf — f L(s(5),105),B(s).y(s),cs)erds.
0

—+00

By (3.13) and (3.14), we have

S 1
lim inf — f 1(S(s),I(s),B(s),y(s),c(s))EUds > = >0 a.s. (315)
rJo F+1

1—00

In view of the definition of event probability and Fatou’s lemma (see [23]), the result of (3.15) is

>0 a.s. (3.16)

liminf — ! f P(s, (S(s),1(s), B(s),y(s),c(s)), U)ds > < :
0 F+1

t—00

where P(t,(S, 1, B,y,c),U) is the transition probability of (S (7), I(?), B(t),y(t), c(t)) belonging to set
U. This shows that the solution (S (¢), I(¢), B(t), y(t), c(t)) of model (1.2) has the Feller and ergodic
property. This completes the proof. O

Mathematical Biosciences and Engineering Volume 20, Issue 7, 11644—-11655.
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4. Density function

The positive equilibrium P* = (S*, I, B*, y*, ¢*) of system (1.2) satisfied the following equations:

0=A —,BK 5 — 1 S™ + max{y*, 0} + max{c*,O}b T
S*B*
0= —(u + L0+ o)l - 0 ,
ﬁK+ 5 (11 + max{y”, 0} + @)I" — max{c }b”* @
0=nl"—wB",
0= /11(7_7*)’
0= A(c - ).

When Ry > 1, we have
r=r, S$*=8, B'=B", vy'=y, (" =c¢C

Let (x1, x2, x3,y1,y2) = (S = S*, 1 - I",B— B*,y — v*,c — ¢*). The linearization model of system
(1.2) is:
dx(?) =[—ai1x; + annxy — apzxs + asy + aisy,]dt,

dxa(2) =[az1x1 — axnx; + aizxs — aigyr — aisy,1ds,

dxs3(1) =[nxz — pox31dt, 4.2)
dyi () = — 1y1dt + 01dB, (1),

dy2(7) = — Ayodt + 02dBs(2),

where
B b _ S'KB .
ar —ﬁm +H, an =Y+ GirE T Eimp W7 r,
o B B * c'b
s = A Fhpp an =ty F @)y gEes
Define
—ap  ap  —ap  daig o d4gs 000 0 O
az —axp a3 —aiy —dis 000 0 O
p=l0o 5 -wm 0 0l],0=l000 0 o0
0 0 0 - 0 00 0 o7 O

0 0 0 0 -4 000 0 o

Let X(¢) = (x1(2), x2(0), x3(£), y1 (), y2())T, P(¢) = (0,0, 0,0, B, (1), Bo(£))", and then the linear system
(4.2) can be written as follows:
dX(r) = DX()dt + QdP(z).

The characteristic equation of
B(Ap) = (A + A+ ) — a1 — apd — a3) = 0,

where
ay =ay +ax +u >0,
a =(ap; + 6122)#2 —apn +apaxy —axydp > 0, (4-3)

asz =pa(anax — axa) + (ay —an)aizn > 0,
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and

aa —az =(ay; + ap)(ay + an)uy — a3n + apaxn — axap] + wol(an + ap)us — apsnl

“4.4)
+ (a1 —az)aizn > 0.

Lemma 4.1. For the five-dimensional algebraic equation P% + DoyXo + Zng = 0, where Py =
diag(1,0,0,0,0), Xy is a symmetrical matrix,

(1)

—a; —ap —asz —d4 —ds

§

|

(e
— O
o O
o O
o O

o
=)
o
S
Qt

If Dy is a Hurwitz matrix, that is, a; > 0(i = 1,2, 3),aa, — az > 0, then X is positive definite and has
the following expression:

2(01222%3) (1) _m 00
O1 Taaray { 0 0
205 " Tew 0 mmeaw 00
0 0 0 00
0 0 0 00
(2)
—ay —ap —asz —d4 —ds
1 0 0 0 0
Dy=| 0 1 0 0 0
0 0 1 0 0
0 0 0 0 a

If Dy is a Hurwitz matrix, that is, a; > 0(i = 1,2,3,4),aa, — a3 > 0 and, ayaxas; — ag - a?a4 > 0, then
X is positive semi-definite and has the following expression:

arasz—dajdg 0 _ as O 0
2(a1a2a3—a%a4—a§) 2(a1a2a3—a%a4—a§)

0 e 0 et 0
2(a|a2a3—afa4—a§) 2(a1a2a3—a%a4—u§)

So=|— az 0 a 0 0

0 2(a1a2a3—u%u4—a§) 2(a1a2a3—u%u4—a§) .
a ajar—a

2(a1a2a3—a1a4—a3) 2a4(a1a2a3—a1a4—a3)

Theorem 4.2. If Ry > 1, the stationary solution (S (1), (1), B(?),y(1), c(t)) of model (1.2) around
(S*,I*, B*,v*,c*)! has a unique normal density function, which takes the form

®(S,1,B,y,c) = (2ﬂ)_%|2|_%e‘%(5 =8"I=I",B=B"y=y",c=c )L™\ (S =S *.I-I".B=B",y=y".c=c")'
with the positive definite matrix ¥ = X + X,.
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(1) # o

Y1 = (awn(as — ary + w2)oy) > (HyHyHyHyHs) ™' 21, [(H HyH3 HyHs) 7'

Yy = (a1sn(ay — ayy + wo)o)* (HyHyHy HyHo) ™' o) [(Hy Hy Hy HyHo) '

(2) u1 = o

%) = (ayao ) (H HyHyHoHy) 'S0, [(H HyHy He Hy) '
%) = (a1sa0) (HyHyHyHgHy o)~ Son [ (Hy HyHy Ho Hy) '
Hi(i=1,2,3,4,5,6,7,8,9,10), X;;(j,i = 1,2) are given in the following proof.

Proof. Let the symmetric matrices X = (rjj)sxs, where r; = r;;. X is determined by the following

algebraic equation:

Q*+ DX +3D" =0.

4.5)

Furthermore, let X = X, + %,, Q1 = diag(0,0,0,0,0,0), O, = diag(0,0,0,0,0, 0»), and then equation
(4.5) can be decomposed into the following two equations: Ql.2 + DY, +XD" =0 (i =1,2). We will
calculate the matrices Z; (i = 1,2) in the following two steps.

Step 1) Q% + DX + ZlDT =0.LetD, = HlDH]_l, where

Let D, = H,D H,", where

0

F

Il
eleolBoNol S
SO = = O
o - o O O

0
1
0
0

S OO = O

- o O O O

0

(= =]

D,

el el eleol S

where ai, — ax — (a1 — ayy) = —a. Let Dy = H3D,H;', where

100
010
Hy={0 0 1
002
000

o = O O

- O O O O

, D3

0 -4 0 0 0 0
0 —di4 —dzy A2 aiz  —dips
O0,Di=|ais ap =-an -aiz as
0 0 n 0 —uw O
1 0 0 0 0 Ay
-4 0 0 0 0
—di4 —dpy — Ay asy aiz  —dis
0 ap-an—-(ay—an) ayg-ay 0O 0
0 n 0 —Us 0
0 0 0 0 Ay
- 0 0 0 0
—di4 —d —dy ay — 5013 aiz  —dais
= 0 - ay; — ai 0 0
0 0 3(6121 —ay+u) —po 0
0 0 0 0 Ay

Case 1. Let ay; —ayy + po # 0, that is, yp # p1y. Let Dy = HyD3H,; ', where

=z
Il
oo eleol S

—n(ax —an + ya)

Mathematical Biosciences and Engineering

0 0 0O 0

g[(azl - 6111)2 - ,U%] ﬂ% 0
0 g(azl —ay +u)  —u2 0]
0 0 1 0
0 0 0 1
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-4 0 0 0 0
ayn(az —ay +u2) —a; —ay —az ajsn(as —ay + W)
D, = 0 1 0 0 0
0 0 1 0 0
0 0 0 0 A

Let Ds = HsD4H;', where

apn(ay —an + ) —a;r —ax —az asn(az —ap + Qo)

0 1 0 0 0

Hs = 0 0 1 0 0 ,
0 0 0 1 0
0 0 0 0 1

where ay, ay, az are given in (4.3).

—(ay+ A1) —(ad +ay) —(axdi +a3) —azdy —aisn(ay —ay + pr)(a; + A)

1 0 0 0 asn(az —an + ()
Ds = 0 1 0 0 0

0 0 1 0 0

0 0 0 0 A

Then, by Lemma 4.1(2), for the matrix equation
Qé + D5211 + Z]]l)gw = O,

with Qg = diag(1,0,0,0,0), we can obtain the positive definite matrix as follows:

(a1ary-a3)A3+a3 A1 +aras 0 _mdi+as 0 0
2H 2H
O” ardi+az O " _a1+/11 O
1 2Hy, 1 2H1,
Z — _ @ 1+as apt+4;
11 SH 0 2 0 0f>
0 _a1+/11 O ajax—az+ajdi(a1+1y) 0
2H; 2a3A1Hyy
0 0 0 0 0

where Hyy = (a1a2 — a3)(a3 + A1a + Aja; + A3). The element a;sn(a; — ajy + i) in the second row and
fifth column of matrix Ds does not affect the calculation results using the method of Lemma 4.1(2).
Then, we have that Q% + AZ, + X,AT = 0 is equivalent to

(HH,H;H,Hs)Q7(HH,H3H,Hs)" + Ds(H,H,H3H4Hs)(H, HH3Hy Hs)'
+ (H,HyH3HyHs)L, (H HyHsH,Hs) DY = 0,

which is further equivalent to

O¢ + (—awn(as — an + p2)o) (Ds(HyHyHyHyHs)E, (H HyHs Hy Hs)'
+ (H\H,H3H,Hs)%,(H HHsHyHs)" DY) = 0.
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Therefore, we finally have that
2 = (auan(ax — ary + p2)o) (HiHyHsHyHs) ™' 241 [(H HyH3 HyHs) 7'l

Thus, X, is calculated and is positive semi-definite.
Case 2. (1, = y;. Let Dg = HeD3H', where

1 0 0 00 -4 0 0 0 0

0 —a ar —adi 00 apu@ —dp —dan -D —a;za d;sa
Hg=|0 O 1 0 0],D¢=| O 1 0 0 0 |,

0 0 0 10 0 0 0 —mwm 0

0 O 0 0 1 0 0 0 0 -

where D* = (6122 + 6121)(a11 - 6121) + dy @ — apsn. Let D; = H7D6H7_1, where

apa —ay —ay —-D' —apa aisa

0 1 0 0 0
H,=| 0 0 1 0 0 |,
0 0 0 1 0
0 0 0 0 1
—(an +an+ A1) —((an +ax)li+D*) -D'Ay Dy Dn
1 0 0 —-apa  a;sa
D; = 0 1 0 0 0 |,
0 0 0 —w O
0 0 0 0 -4
where Dq = —apza(ay; +axn +,l12), Dy, = —61150(6111 + ar — /12) Then, by Lemma 41(1), for the matrix

equation
Q% + D7212 + 212D7T = O,

we can obtain the positive define matrix as follows:

(a1 +ax)A +D* 1
e 0ty 000
0 7= 0 00
— 1 aj +anr+Aa
So=| om0 4 0 0
0 0 0 00
0 0 0 00

Hy, = (6111 + dar» + /11)6111 + and; + ay + anD*. The elements —a;3a, d;sa in the second row, fourth
column and fifth column of matrix Ds do not affect the calculation results using the method of Lemma
4.1(1). Then, we have that Q% + DX, + ;D" = 0 is equivalent to

(H,H,H3HsH7)Q(H,HyH3HsHy7)" + D7(H,H,H3HgH7)X,(H, HyH3 Hg Hy)”
+ (H,HyHsHgH7)X,(H, HyHy HgH7)' DY = 0,

which is further equivalent to

Qi + (aygac ) *(D7(H,HyHy Ho Hy)2 (H HyHs HoHy)' + (HyHyHs HoHy)X (H HyHy HgHy)' DY) = 0.
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Therefore, we finally have that
2, = (aao)’(HiHyHsHoHy) ™' Sio[(H HyHy HeHy) 7' T

Thus, X; is calculated and is positive semi-definite.
Step 2) Q% + DX, + ZZDT =0. Let Dg = HgDHg_l, Dy = HzDgHz_l, Dy = H3D9H3_1, where H,, H;
are given in step (1), and

00 O0O01 -A> 0 0 0 0
01000 —aj;s —ax da; ai3  —du
Hg=|1 0 0 0 Of,Dg=|a;s apn -—-ay -aiz au |,
00100 0 n 0 —H2 0
00010 0 0 0 0 -4
-A> 0 0 0 0
—ais —dx —dz asy apz  —dig
D9 = 0 — ar —Aapy 0 0 ,
0 n 0 - 0
0 0 0 0 -4
-1 0 0 0 0
—dis —dax —dp] a — 36113 a3 —diy
Dip=| 0 - ds; — dap 0 0
0 0 2(an —an +py) 2 0
0 0 0 0 -4

Case 1. Let up # ;. Let Dy, = HyDoH, ', where Hy is given in step (1), and

A 0 0 0 0
ajsn(az; —ay +u2) —a; —axy —az  apn(az —ay + ()
D = 0 1 0 0 0 ,
0 0 1 0 0
0 0 0 0 -

where ay, ay, as are given in (4.3). Let Dy, = H9D11H9‘1, where

aisn(az —ay + () —ap —ax —az aun(ax —ap + (o)

0 1 0 0 0
Hy = 0 0 1 0 0 ,
0 0 0 1 0
0 0 0 0 1
—(a; + ) —(aa+a)) —(axdr+a3) —azdy aun(ay —apn + up)(a) + 1)
1 0 0 0 ayn(as; — ay + (o)
D12 = 0 1 0 O O
0 0 1 0 0
0 0 0 0 -4
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Then, by Lemma 4.1(2), for the matrix equation:
Qp + D131 + 221D, = 0,

we can obtain the positive define matrix as follows:

(a1a2—a3 )/l§+a§/12 +azas 0 _mlrtas 0 0
2H21 21'121

0 wbtay 0 _dtd 0

3y arr+a 2Ha +1 i
= _@ltay at+ly
21 St 0 ST 0 01,
0 _aitd 0 arax—az+ai(ai+A) 0
2H>; 2a3 A2 Hy
0 0 0 0 0

where Hy| = (alaz - ag)(a3 + Aay + /1%(11 + /lg)
Then, we have that Q% + DX, + %,D" = 0 is equivalent to

(HsH,H3H,Ho)Q5(HsHyHyHyHo)' + Do (HyHy HyHyHo)2o (Hy Hy Hy HyHo)'
+ (HsH,H3H4Ho)X,(Hy Hy Hy Hy Ho) DY, = 0,

which is further equivalent to

Q5 + (aisn(az — ary + pa)o2) > (Dyo(HsHyHy HyHo) 2o (Hy Hy Hy HyHo)'
+ (HsH,H3HyHo)Eo(Hy Hy HyHyHo) DY) = 0.

Therefore, we finally have that
Yy = (a1sn(az — ayy + wo)o)* (HyHyHy HyHo) ™' o) [(Hy Hy Hy HyHo) ™'

Thus, %, is calculated and is positive semi-definite.
Case 2. u; = up. Let D3 = H6D10H6‘1, where Hg is given in step (1), and

- 0 0 0 0

a;sa@ —ay —axy —-D' —apa aya
Ds;=| 0 1 0 0 0
0 0 0 —-w O

0 0 0 0 -

Let D14 = H10D13H1_C}, where

aisa —aj —ay -D' —apa apa

0 1 0 0 0
H]() = O 0 1 O O
0 0 0 1 0
0 0 0 0 1
—(an +ap+ ) —((a +an)ly + D*) D", D7, D73
1 0 0 —ap(y+a) —auly +a)
D14 = 0 1 0 0 0
0 0 0 i 0
0 0 0 0 -4
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where D73 = —apa(ay; + a» — A1). Then, by Lemma 4.1(1), for the matrix equation
0§ + D14Zs + D], = 0,

we can obtain the positive define matrix as follows:

(a1 +axn)Ar+D” 1
—+222,222+ 0 — 3 00
0 7= 0 00
— 1 aj +ar+Aa
=l e 00 SEEES 00
0 0 0 00
0 0 0 00

where H,, = (Cl]] + az + /12)(6111 + Clzz)/lz + (Cl]] + Clzz)D*. Then, we have that Q% + DXy + EZDT =0is
equivalent to

(HsHyH3HgH\0)Q5(Hy HyHyHoHyo)' + Dyy(HyHyHy HoH o) Zo(Hy HyHy Ho H i)'

+ (HyHyH3HgH )2, (Hs HyHy HoH ) DY, = 0,

which is further equivalent to

Q(z) + (01500'2)_2(D14(H8H2H3H6H10)22(H8H2H3H6H10)T
+ (HyH,H3HgH )2, (Hs HyH3 HgHy)' D1,) = 0.

Therefore, we finally have that
%) = (a1sa0) (HyHyHyHgHyo) ' Xon [(Hy HyHy Ho Hy) '

Thus, %, is calculated and is positive semi-definite. Then, £ = X, + X, is positive define. Therefore,
the expression of a normal density function around the quasi-endemic equilibrium of model (1.2) is
obtained by

(D(S, I, B, Y, C) — (271_)—% |E|—%e—%(S—S*,I—I*,B—B*,y—y*,c—c*)z_l(S —S*,I—I*,B—B*,y—y*,c—c*)T.

This completes the proof. O
5. Numerical examples

In model (1.2), we take the parameters A = 2,8=0.5,K =04, 4, = 0.2, up = 0.5, =0.2,7 = 0.2,
6 =6, =02,¢=0.06,y=0.1,b =1and oy = 0, = 0.02. The numerical simulation of solution
(S (1), 1(r), B(1)) is done with initial value (S (0), 1(0), B(0)) = (3, 1.5, 1.5). We obtain R} = 8.5436 > 1.
The positive equilibrium of model (1.2) is E* = (S*,I", B*,y",c*) = (4.08,2.96,1.18,0.1,0.06). (See
Fig. 1) The conditions in Theorem 3.1 and Theorem 4.2 are satisfied. Therefore, there exists the
stationary distribution of model (1.2) (See Fig. 2), and there is a unique normal density function near
equilibrium E*. Then, the positive definite matrix X is calculated as

0.7302 -0.4415 -0.1544 0.1636  0.0413
-0.4415 0.2971 0.0880 -0.1090 -0.0275
2 =1-0.1544 0.0880 0.0352 -0.0312 -0.0079],
0.1636  —-0.1090 -0.0312 0.0500 0
0.0413 -0.0275 -0.0079 0 0.0500
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and density function

(D(S I.B y C) = 1.0100 x 10—66—%(S—4.08,1—2.96,3—1.18,7—0.1,c—0.06)><2‘1(S—4.08,1—2.96,3—1.18,y—0.1,c—0‘06)T
s L 2/ - . .

Then, S, I and B have the following marginal probability densities:

0P 0.1863¢-49-4615(5-1.6875) 00 _ 0.292()~28:5588(1-1.3961)? 00 _ 0.8483 408 5348(B-13961)2
oS ' il ’ OB~ .

The numerical simulation of the marginal probability densities for S, I and B is given in Figure 3.

= = = Deterministic B()
Stochastic B()

= = = Deterministic S()
Stochastic S()

= = = Deterministc I()
Stochastic 1()
] T

3 25 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000 400 600 800 1000 1200 1400 1600 1800 2000 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time t Time t Time t

Figure 1. This shows the trajectories of S (¢), 1(¢) and B(¢) of deterministic model (1.1) and
stochastic model (1.2), respectively.

L10° _Histogram and density function of stochastic S(t)

L10° _Histogram and density function of stochastic I(t) L 10° _Histogram and density functi

Frequency histogram I Frequency histogram
Marginal densiy function Marginal densiy function

Frequency histogram
Marginal density function

26 27 28 29 3 31 32 a3

4 Frequency histogram fiting curve 1
= — = Marginal densiy function | —— Frequency histogran fting curve
= = = Marginal densiy function
35 N
10
2
3
8
15 25
9 © o
2 g 2
3 3 2 36
s s >
1
15
1
1
05
2
05
0 0 o
34 36 38 4 42 a4 a6 a8 25 26 27 28 29 3 31 32 33 34 1 105 11 115 12 125 13 135
Stochastic S(t) Stochastic I(t) Stochastic B(t)

Figure 3. The numerical simulation of the marginal probability densities for S, 7 and B of
model (1.2), respectively.
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6. Conclusion

In this paper, we investigated a stochastic SIBS cholera model with saturation recovery rate and
Ornstein-Uhlenbeck process. First, we proved that there is a unique global solution for any initial value
of model. Secondly, the sufficient criterion of the stationary distribution of the model was obtained
by constructing a suitable Lyapunov function, and the expression of the probability density function
was calculated by the same condition. Finally, the correctness of the theoretical results is verified
by numerical simulation, and the specific expression of the marginal probability density function is
obtained.

This paper analyzes the interference of random disturbance in the process of recovering the infected
person to the susceptible person during the transmission of cholera, but in fact, other parameters will
also be more or less affected by random disturbance. In addition, people in many countries and regions
have been vaccinated against cholera. In this process, cholera transmission is also affected by random
factors. Therefore, there is still much work worthy of further study.
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