Theory article

A stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps


  • Received: 28 November 2023 Revised: 26 January 2024 Accepted: 08 February 2024 Published: 23 February 2024
  • By using the Ornstein-Uhlenbeck (OU) process to simulate random disturbances in the environment, and considering the influence of jump noise, a stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps was established, and the asymptotic behaviors of the stochastic Gilpin-Ayala mutualism model were studied. First, the existence of the global solution of the stochastic Gilpin-Ayala mutualism model is proved by the appropriate Lyapunov function. Second, the moment boundedness of the solution of the stochastic Gilpin-Ayala mutualism model is discussed. Third, the existence of the stationary distribution of the solution of the stochastic Gilpin-Ayala mutualism model is obtained. Finally, the extinction of the stochastic Gilpin-Ayala mutualism model is proved. The theoretical results were verified by numerical simulations.

    Citation: Meng Gao, Xiaohui Ai. A stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps[J]. Mathematical Biosciences and Engineering, 2024, 21(3): 4117-4141. doi: 10.3934/mbe.2024182

    Related Papers:

  • By using the Ornstein-Uhlenbeck (OU) process to simulate random disturbances in the environment, and considering the influence of jump noise, a stochastic Gilpin-Ayala mutualism model driven by mean-reverting OU process with Lévy jumps was established, and the asymptotic behaviors of the stochastic Gilpin-Ayala mutualism model were studied. First, the existence of the global solution of the stochastic Gilpin-Ayala mutualism model is proved by the appropriate Lyapunov function. Second, the moment boundedness of the solution of the stochastic Gilpin-Ayala mutualism model is discussed. Third, the existence of the stationary distribution of the solution of the stochastic Gilpin-Ayala mutualism model is obtained. Finally, the extinction of the stochastic Gilpin-Ayala mutualism model is proved. The theoretical results were verified by numerical simulations.



    加载中


    [1] X. Abdurahman, Z. D. Teng, Persistence and extinction for general nonautonomous N-species Lotka-Volterra cooperative systems with delays, Stud. Appl. Math., 118 (2007), 17–43. https://doi.org/10.1111/j.1467-9590.2007.00362.x doi: 10.1111/j.1467-9590.2007.00362.x
    [2] B. S. Goh, Stability in models of mutualism, Am. Nat., 113 (1979), 261–275. https://doi.org/10.1086/283384 doi: 10.1086/283384
    [3] J. X. Pan, Z. Jin, Z. E. Ma, Thresholds of survival for an N-dimensional volterra mutual istic system in a polluted environment, J. Math. Anal. Appl., 252 (2000), 519–531. https://doi.org/10.1006/jmaa.2000.6853 doi: 10.1006/jmaa.2000.6853
    [4] L. Stone, The stability of mutualism, Nat. Commun., 11 (2020), 2648. https://doi.org/10.1038/s41467-020-16474-4 doi: 10.1038/s41467-020-16474-4
    [5] M. E. Gilpin, F. J. Ayala, Global models of growth and competition, Proc. Natl. Acad. Sci. U.S.A., 70 (1973), 3590–3593. https://doi.org/10.1073/pnas.70.12.3590 doi: 10.1073/pnas.70.12.3590
    [6] X. Y. Li, X. R. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009), 523–545. https://doi.org/10.3934/dcds.2009.24.523 doi: 10.3934/dcds.2009.24.523
    [7] M. Liu, K. Wang, Population dynamical behavior of Lotka-Volterra cooperative systems with random perturbations, Discrete Contin. Dyn. Syst., 33 (2012), 2495–2522. https://doi.org/10.3934/dcds.2013.33.2495 doi: 10.3934/dcds.2013.33.2495
    [8] M. Liu, P. S. Mandal, Dynamical behavior of a one-prey two-predator model with random perturbations, Commun. Nonlinear Sci. Numer. Simul., 28 (2015), 123–137. https://doi.org/10.1016/j.cnsns.2015.04.010 doi: 10.1016/j.cnsns.2015.04.010
    [9] X. H. Zhang, K. Wang, Asymptotic behavior of stochastic Gilpin-Ayala mutualism model with jumps, Electron. J. Differ. Equations, 2013 (2013), 1–17.
    [10] W. R. Li, Q. M. Zhang, M. Anke, M. B. Ye, Y. Li, Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps, Math. Biosci. Eng., 17 (2020), 2650-2675. https://doi.org/10.3934/mbe.2020145 doi: 10.3934/mbe.2020145
    [11] B. Q. Zhou, D. Q. Jiang, T. Hayat, Analysis of a stochastic population model with mean-reverting Ornstein-Uhlenbeck process and Allee effects, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106450–106468. https://doi.org/10.1016/j.cnsns.2022.106450 doi: 10.1016/j.cnsns.2022.106450
    [12] E. Allen, Environmental variability and mean-reverting processes, Discrete Contin. Dyn. Syst. - Ser. B, 21 (2016), 2073–2089. https://doi.org/10.3934/dcdsb.2016037 doi: 10.3934/dcdsb.2016037
    [13] X. R. Mao, T. Aubrey, C. G. Yuan, Euler-Maruyama approximations in mean-reverting stochastic volatility model under regime switching, J. Appl. Math. Stochastic Anal., 2006 (2014), 5–12. https://doi.org/10.1155/JAMSA/2006/80967 doi: 10.1155/JAMSA/2006/80967
    [14] R. A. Maller, G. Müller, A. Szimayer, Ornstein–Uhlenbeck processes and extensions, Handb. Financ. Time Ser., 2009,421–437. https://doi.org/10.1007/978-3-540-71297-8_18 doi: 10.1007/978-3-540-71297-8_18
    [15] A. Melnikov, A Course of Stochastic Analysis, Springer: Switzerland, 2023. https://doi.org/10.1007/978-3-031-25326-3
    [16] J. H. Bao, X. R. Mao, G. Yin, C. G. Yuan, Competitive Lotka–Volterra population dynamics with jumps, Nonlinear Anal. Theory Methods Appl., 74 (2011), 6601–6616. https://doi.org/10.1016/j.na.2011.06.043 doi: 10.1016/j.na.2011.06.043
    [17] J. H. Bao, C. G. Yuan, Stochastic population dynamics driven by Lévy noise, J. Math. Anal. Appl., 391 (2012), 363–375. https://doi.org/10.1016/j.jmaa.2012.02.043 doi: 10.1016/j.jmaa.2012.02.043
    [18] X. H. Zhang, K. Wang, Stability analysis of a stochastic Gilpin–Ayala model driven by Lévy noise, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1391–1399. https://doi.org/10.1016/j.cnsns.2013.09.013 doi: 10.1016/j.cnsns.2013.09.013
    [19] Y. F. Shao, W. L. Kong, A predator–prey model with beddington–DeAngelis functional response and multiple delays in deterministic and stochastic environments, Mathematics, 10 (2022), 3378. https://doi.org/10.3390/math10183378 doi: 10.3390/math10183378
    [20] Y. F. Shao, Dynamics and optimal harvesting of a stochastic predator-prey system with regime switching, S-type distributed time delays and Lévy jumps, AIMS Math., 7 (2021), 4068–4093. https://doi.org/10.3934/math.2022225 doi: 10.3934/math.2022225
    [21] M. Liu, C. Z. Bai, M. L. Deng, B. Du, Analysis of stochastic two-prey one-predator model with Lévy jumps, Physica A, 445 (2016), 176–188. https://doi.org/10.1016/j.physa.2015.10.066 doi: 10.1016/j.physa.2015.10.066
    [22] R. A. Lipster, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217–228. https://doi.org/10.1007/978-3-642-23280-0 doi: 10.1007/978-3-642-23280-0
    [23] N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, Japan: North-Holland Publishing Company, 1981.
    [24] G. D. Prato, J. Zabczyk, Ergodicity for Infinite Dimensional Systems, Cambridge: Cambridge University Press, 1996.
    [25] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
    [26] X. F. Zhang, R. Yuan, A stochastic chemostat model with mean-reverting Ornstein–Uhlenbeck process and Monod-Haldane response function, Appl. Math. Comput., 394 (2021), 125833. https://doi.org/10.1016/j.amc.2020.125833 doi: 10.1016/j.amc.2020.125833
    [27] Y. L. Cai, J. J. Jiao, Z. J. Gui, Y. T. Liu, W. M. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. https://doi.org/10.1016/j.amc.2018.02.009 doi: 10.1016/j.amc.2018.02.009
    [28] Y. Zhao, S. L. Yuan, J. L. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bull. Math. Biol., 77 (2015), 1285–1326. http://dx.doi.org/10.1007/s11538-015-0086-4 doi: 10.1007/s11538-015-0086-4
    [29] I. R. Geijzendorffer, W. van der Werf, F. J. J. A. Bianchi, R. P. O. Schulte, Sustained dynamic transience in a Lotka–Volterra competition model system for grassland species, Ecol. Modell., 222 (2011), 2817–2824. https://doi.org/10.1016/j.ecolmodel.2011.05.029 doi: 10.1016/j.ecolmodel.2011.05.029
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(507) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog