In this paper, we take the resting T cells into account and interpret the progression and regression of tumors by a predator-prey like tumor-immune system. First, we construct an appropriate Lyapunov function to prove the existence and uniqueness of the global positive solution to the system. Then, by utilizing the stochastic comparison theorem, we prove the moment boundedness of tumor cells and two types of T cells. Furthermore, we analyze the impact of stochastic perturbations on the extinction and persistence of tumor cells and obtain the stationary probability density of the tumor cells in the persistent state. The results indicate that when the noise intensity of tumor perturbation is low, tumor cells remain in a persistent state. As this intensity gradually increases, the population of tumors moves towards a lower level, and the stochastic bifurcation phenomena occurs. When it reaches a certain threshold, instead the number of tumor cells eventually enter into an extinct state, and further increasing of the noise intensity will accelerate this process.
Citation: Bingshuo Wang, Wei Li, Junfeng Zhao, Natasa Trisovic. Longtime evolution and stationary response of a stochastic tumor-immune system with resting T cells[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2813-2834. doi: 10.3934/mbe.2024125
In this paper, we take the resting T cells into account and interpret the progression and regression of tumors by a predator-prey like tumor-immune system. First, we construct an appropriate Lyapunov function to prove the existence and uniqueness of the global positive solution to the system. Then, by utilizing the stochastic comparison theorem, we prove the moment boundedness of tumor cells and two types of T cells. Furthermore, we analyze the impact of stochastic perturbations on the extinction and persistence of tumor cells and obtain the stationary probability density of the tumor cells in the persistent state. The results indicate that when the noise intensity of tumor perturbation is low, tumor cells remain in a persistent state. As this intensity gradually increases, the population of tumors moves towards a lower level, and the stochastic bifurcation phenomena occurs. When it reaches a certain threshold, instead the number of tumor cells eventually enter into an extinct state, and further increasing of the noise intensity will accelerate this process.
[1] | L. G. de Pillis, A. E. Radunskaya, C. L. Wiseman, A validated mathematical model of cell-mediated immune response to tumor growth, Cancer Res., 65 (2005), 7950–7958. https://doi.org/10.1158/0008-5472.CAN-05-0564 doi: 10.1158/0008-5472.CAN-05-0564 |
[2] | R. Yafia, Hopf bifurcation in differential equations with delay for tumor–immune system competition model, SIAM J. Appl. Math., 67 (2007), 1693–1703. https://doi.org/10.1137/060657947 doi: 10.1137/060657947 |
[3] | K. J. Mahasa, R. Ouifki, A. Eladdadi, L. de Pillis, Mathematical model of tumor–immune surveillance, J. Theor. Biol., 404 (2016), 312–330. https://doi.org/10.1016/j.jtbi.2016.06.012 doi: 10.1016/j.jtbi.2016.06.012 |
[4] | W. L. Duan, The stability analysis of tumor-immune responses to chemotherapy system driven by gaussian colored noises, Chaos Solitons Fractals, 141 (2020), 110303. https://doi.org/10.1016/j.chaos.2020.110303 doi: 10.1016/j.chaos.2020.110303 |
[5] | W. L. Duan, H. Fang, C. Zeng, The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises, Chaos Solitons Fractals, 127 (2019), 96–102. https://doi.org/10.1016/j.chaos.2019.06.030 doi: 10.1016/j.chaos.2019.06.030 |
[6] | W. L. Duan, L. Lin, Noise and delay enhanced stability in tumor-immune responses to chemotherapy system, Chaos Solitons Fractals, 148 (2021), 111019. https://doi.org/10.1016/j.chaos.2021.111019 doi: 10.1016/j.chaos.2021.111019 |
[7] | H. Dritschel, S. Waters, A. Roller, H. Byrne, A mathematical model of cytotoxic and helper t cell interactions in a tumor microenvironment, Lett. Biomath., 5 (2018). |
[8] | M. Gaach, Dynamics of the tumor-immune system competition: The effect of time delay, Int. J. Appl. Math. Comput. Sci., 2003 (2003). |
[9] | W. M. Yokoyama, S. Kim, A. R. French, The dynamic life of natural killer cells., Ann. Rev. Immunol., 22 (2004), 405–429. https://doi.org/10.1146/annurev.immunol.22.012703.104711 doi: 10.1146/annurev.immunol.22.012703.104711 |
[10] | N. Martin-Orozco, P. Muranski, Y. Chung, X. O. Yang, T. Yamazaki, S. Lu, et al., T helper 17 cells promote cytotoxic t cell activation in tumor immunity, Immunity, 31 (2009), 787–798. https://doi.org/10.1016/j.immuni.2009.09.014 doi: 10.1016/j.immuni.2009.09.014 |
[11] | H. Tian, Y. He, X. Song, L. Jiang, J. Luo, Y. Xu, et al., Nitrated t helper cell epitopes enhance the immunogenicity of her2 vaccine and induce anti-tumor immunity, Cancer Lett., 430 (2018), 79–87. https://doi.org/10.1016/j.canlet.2018.05.021 doi: 10.1016/j.canlet.2018.05.021 |
[12] | Y. Kobayashi, N. Kurose, X. Guo, A. Shioya, M. Kitamura, H. Tsuji, et al., The potential role of follicular helper t cells and helper t cells type 1 in warthin tumour, Pathol. Res. Pract., 220 (2021), 153386. https://doi.org/10.1016/j.prp.2021.153386 doi: 10.1016/j.prp.2021.153386 |
[13] | M. Moeller, N. M. Haynes, M. H. Kershaw, J. T. Jackson, M. W. Teng, S. E. Street, et al., Adoptive transfer of gene-engineered cd4+ helper t cells induces potent primary and secondary tumor rejection, Blood, 106 (2005), 2995–3003. https://doi.org/10.1182/blood-2004-12-4906 doi: 10.1182/blood-2004-12-4906 |
[14] | G. Kaur, N. Ahmad, On study of immune response to tumor cells in prey-predator system, Int. Scholarly Res. Not., 2014 (2014). |
[15] | G. Song, T. Tian, X. Zhang, A mathematical model of cell-mediated immune response to tumor, Math. Biosci. Eng, 18 (2021), 373–385. https://doi.org/10.2298/SJEE2103385L doi: 10.2298/SJEE2103385L |
[16] | K. Dehingia, P. Das, R. K. Upadhyay, A. K. Misra, F. A. Rihan, K. Hosseini, Modelling and analysis of delayed tumour–immune system with hunting t-cells, Math. Comput. Simul., 203 (2023), 669–684. |
[17] | S. Kartal, Mathematical modeling and analysis of tumor-immune system interaction by using lotka-volterra predator-prey like model with piecewise constant arguments, Period. Eng. Nat. Sci., 2 (2014). http://dx.doi.org/10.21533/pen.v2i1.36 doi: 10.21533/pen.v2i1.36 |
[18] | R. R. Sarkar, S. Banerjee, Cancer self remission and tumor stability–a stochastic approach, Math. Biosci., 196 (2005), 65–81. https://doi.org/10.1016/j.mbs.2005.04.001 doi: 10.1016/j.mbs.2005.04.001 |
[19] | R. L. Elliott, G. C. Blobe, Role of transforming growth factor beta in human cancer, J. Clin. Oncol., 23 (2005), 2078–2093. https://doi.org/10.1200/JCO.2005.02.047 doi: 10.1200/JCO.2005.02.047 |
[20] | R. P. Garay, R. Lefever, A kinetic approach to the immunology of cancer: Stationary states properties of efffector-target cell reactions, J. Theor. Biol., 73 (1978), 417–438. https://doi.org/10.1016/0022-5193(78)90150-9 doi: 10.1016/0022-5193(78)90150-9 |
[21] | A. Mantovani, P. Allavena, A. Sica, Tumour-associated macrophages as a prototypic type ii polarised phagocyte population: role in tumour progression, Eur. J. Cancer, 40 (2004), 1660–1667. https://doi.org/10.1016/j.ejca.2004.03.016 doi: 10.1016/j.ejca.2004.03.016 |
[22] | G. Caravagna, A. d'Onofrio, P. Milazzo, R. Barbuti, Tumour suppression by immune system through stochastic oscillations, J. Theor. Biol., 265 (2010), 336–345. https://doi.org/10.1016/j.jtbi.2010.05.013 doi: 10.1016/j.jtbi.2010.05.013 |
[23] | I. Bashkirtseva, L. Ryashko, Á. G. López, J. M. Seoane, M. A. Sanjuán, Tumor stabilization induced by t-cell recruitment fluctuations, Int. J. Bifurcation Chaos, 30 (2020), 2050179. https://doi.org/10.1142/S0218127420501795 doi: 10.1142/S0218127420501795 |
[24] | M. Baar, L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting, et al., A stochastic model for immunotherapy of cancer, Sci. Rep., 6 (2016), 24169. |
[25] | X. Liu, Q. Li, J. Pan, A deterministic and stochastic model for the system dynamics of tumor–immune responses to chemotherapy, Phys. A, 500 (2018), 162–176. https://doi.org/10.1016/j.physa.2018.02.118 doi: 10.1016/j.physa.2018.02.118 |
[26] | X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, 1997. |
[27] | E. Planten, N. Ikeda, S. Watanabe, Stochastic Differential Equations and Diffusion Processes, 2nd edition, North-Holland Mathematical Library, 1989. |
[28] | D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302 |
[29] | V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, Bull. Math. Biol., 56 (1994), 295–321. |
[30] | X. Li, G. Song, Y. Xia, C. Yuan, Dynamical behaviors of the tumor-immune system in a stochastic environment, SIAM J. Appl. Math., 79 (2019), 2193–2217. https://doi.org/10.1137/19M1243580 doi: 10.1137/19M1243580 |
[31] | Y. Zhao, S. Yuan, J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bull. Math. Biol., 77 (2015), 1285–1326. https://doi.org/10.1007/s11538-015-0086-4 doi: 10.1007/s11538-015-0086-4 |
[32] | G. Liu, X. Wang, X. Meng, S. Gao, Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps, Complexity, 2017 (2017), 1950970. https://doi.org/10.1155/2017/1950970 doi: 10.1155/2017/1950970 |