The multi-objective particle swarm optimization algorithm has several drawbacks, such as premature convergence, inadequate convergence, and inadequate diversity. This is particularly true for complex, high-dimensional, multi-objective problems, where it is easy to fall into a local optimum. To address these issues, this paper proposes a novel algorithm called IMOPSOCE. The innovations for the proposed algorithm mainly contain three crucial factors: 1) an external archive maintenance strategy based on the inflection point distance and distribution coefficient is designed, and the comprehensive indicator (CM) is used to remove the non-dominated solutions with poor comprehensive performance to improve the convergence of the algorithm and diversity of the swarm; 2) using the random inertia weight strategy to efficiently control the movement of particles, balance the exploration and exploitation capabilities of the swarm, and avoid excessive local and global searches; and 3) offering different flight modes for particles at different levels after each update to further enhance the optimization capacity. Finally, the algorithm is tested on 22 typical test functions and compared with 10 other algorithms, demonstrating its competitiveness and outperformance on the majority of test functions.
Citation: Xianzi Zhang, Yanmin Liu, Jie Yang, Jun Liu, Xiaoli Shu. Handling multi-objective optimization problems with a comprehensive indicator and layered particle swarm optimizer[J]. Mathematical Biosciences and Engineering, 2023, 20(8): 14866-14898. doi: 10.3934/mbe.2023666
The multi-objective particle swarm optimization algorithm has several drawbacks, such as premature convergence, inadequate convergence, and inadequate diversity. This is particularly true for complex, high-dimensional, multi-objective problems, where it is easy to fall into a local optimum. To address these issues, this paper proposes a novel algorithm called IMOPSOCE. The innovations for the proposed algorithm mainly contain three crucial factors: 1) an external archive maintenance strategy based on the inflection point distance and distribution coefficient is designed, and the comprehensive indicator (CM) is used to remove the non-dominated solutions with poor comprehensive performance to improve the convergence of the algorithm and diversity of the swarm; 2) using the random inertia weight strategy to efficiently control the movement of particles, balance the exploration and exploitation capabilities of the swarm, and avoid excessive local and global searches; and 3) offering different flight modes for particles at different levels after each update to further enhance the optimization capacity. Finally, the algorithm is tested on 22 typical test functions and compared with 10 other algorithms, demonstrating its competitiveness and outperformance on the majority of test functions.
[1] | C. A. C. Coello, G. T. Pulido, M. S. Lechuga, Handling multiple objectives with particle swarm optimization, IEEE Trans. Evol. Comput., 8 (2004), 256–279. https://doi.org/10.1109/TEVC.2004.826067 doi: 10.1109/TEVC.2004.826067 |
[2] | X. Zhao, J. Guo, M. He, Multiobjective optimization of multisource heating system based on improving diversification and implementation, Energy Convers. Manage., 266 (2022), 115789. https://doi.org/10.1016/j.enconman.2022.115789 doi: 10.1016/j.enconman.2022.115789 |
[3] | S. Chen, Y. Yang, M. Qin, Q. Xu, Coordinated multiobjective optimization of the integrated energy distribution system considering network reconfiguration and the impact of price fluctuation in the gas market, Int. J. Electr. Power Energy Syst., 138 (2022), 107776. https://doi.org/10.1016/j.ijepes.2021.107776 doi: 10.1016/j.ijepes.2021.107776 |
[4] | W. Tan, X. Yuan, G. Huang, Z. Liu, Low-carbon joint scheduling in flexible open-shop environment with constrained automatic guided vehicle by multi-objective particle swarm optimization, Appl. Soft Comput., 111 (2021), 107695. https://doi.org/10.1016/j.asoc.2021.107695 doi: 10.1016/j.asoc.2021.107695 |
[5] | M. Li, S. Yang, M. Zhang, Power supply system scheduling and clean energy application based on adaptive chaotic particle swarm optimization, Alexandria Eng. J., 61 (2022), 2074–2087. https://doi.org/10.1016/j.aej.2021.08.008 doi: 10.1016/j.aej.2021.08.008 |
[6] | A. H. Barahimi, A. Eydi, A. Aghaie, Multi-modal urban transit network design considering reliability: multi-objective bi-level optimization, Reliab. Eng. Syst. Saf., 216 (2021), 107922. https://doi.org/10.1016/j.ress.2021.107922 doi: 10.1016/j.ress.2021.107922 |
[7] | H. Li, S. Wang, Q. Chen, M. Gong, L. Chen, IPSMT: multi-objective optimization of multipath transmission strategy based on improved immune particle swarm algorithm in wireless sensor networks, Appl. Soft Comput., 121 (2022), 108705. https://doi.org/10.1016/j.asoc.2022.108705 doi: 10.1016/j.asoc.2022.108705 |
[8] | A. Mehto, S. Tapaswi, K. K. Pattanaik, Multi-objective particle swarm optimization based rendezvous point selection for the energy and delay efficient networked wireless sensor data acquisition, J. Network Comput. Appl., 195 (2021), 103234. https://doi.org/10.1016/j.jnca.2021.103234 doi: 10.1016/j.jnca.2021.103234 |
[9] | Y. Zhang, L. Yuan, Q. Zhang, X. Sun, Multi-objective optimization of building energy performance using a particle swarm optimizer with less control parameters, J. Build. Eng., 32 (2020), 101505. https://doi.org/10.1016/j.jobe.2020.101505 doi: 10.1016/j.jobe.2020.101505 |
[10] | M. A. Mosa, A novel hybrid particle swarm optimization and gravitational search algorithm for multi-objective optimization of text mining, Appl. Soft Comput., 90 (2020), 106189. https://doi.org/10.1016/j.asoc.2020.106189 doi: 10.1016/j.asoc.2020.106189 |
[11] | M. Kaucic, Equity portfolio management with cardinality constraints and risk parity control using multi-objective particle swarm optimization, Comput. Oper. Res., 109 (2019), 300–316. https://doi.org/10.1016/j.cor.2019.05.014 doi: 10.1016/j.cor.2019.05.014 |
[12] | J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 |
[13] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Software, 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008 |
[14] | S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Comput. Appl., 27 (2016), 1053–1073. https://doi.org/10.1007/s00521-015-1920-1 doi: 10.1007/s00521-015-1920-1 |
[15] | C. A. C. Coello, M. S. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in Proceedings of the 2002 Congress on Evolutionary Computation, 2 (2002), 1051–1056. https://doi.org/10.1109/CEC.2002.1004388 |
[16] | H. T. Chen, W. C. Wang, X. N. Chen, L. Qiu, Multi-objective reservoir operation using particle swarm optimization with adaptive random inertia weights, Water Sci. Eng., 13 (2020), 136–144. https://doi.org/10.1016/j.wse.2020.06.005 doi: 10.1016/j.wse.2020.06.005 |
[17] | M. Roshanzamir, M. A. Balafar, S. N. Razavi, A new hierarchical multi group particle swarm optimization with different task allocations inspired by holonic multi agent systems, Expert Syst. Appl., 149 (2020), 113292. https://doi.org/10.1016/j.eswa.2020.113292 doi: 10.1016/j.eswa.2020.113292 |
[18] | K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multi-objective optimization, in Evolutionary Multiobjective Optimization, (2005), 105–145. https://doi.org/10.1007/1-84628-137-7_6 |
[19] | K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ, IEEE Trans. Evol. Comput., 6 (2002), 182–197. https://doi.org/10.1109/4235.996017 doi: 10.1109/4235.996017 |
[20] | C. R. Raquel, P. C. Naval, An effective use of crowding distance in multiobjective particle swarm optimization, in Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, (2005), 257–264. https://doi.org/10.1145/1068009.1068047 |
[21] | J. Liu, F. Li, X. Kong, P. Huang, Handling many-objective optimisation problems with R2 indicator and decomposition-based particle swarm optimiser, Int. J. Syst. Sci., 50 (2019), 320–336. https://doi.org/10.1080/00207721.2018.1552765 doi: 10.1080/00207721.2018.1552765 |
[22] | J. Luo, A. Gupta, Y. S. Ong, Z. Wang, Evolutionary optimization of expensive multiobjective problems with co-sub-Pareto front Gaussian process surrogates, IEEE Trans. Cybern., 49 (2018), 1708–1721. https://doi.org/10.1109/TCYB.2018.2811761 doi: 10.1109/TCYB.2018.2811761 |
[23] | W. Hu, G. G. Yen, Adaptive multiobjective particle swarm optimization based on parallel cell coordinate system, IEEE Trans. Evol. Comput., 19 (2013), 1–18. https://doi.org/10.1109/TEVC.2013.2296151 doi: 10.1109/TEVC.2013.2296151 |
[24] | H. Han, W. Lu, J. Qiao, An adaptive multiobjective particle swarm optimization based on multiple adaptive methods, IEEE Trans. Cybern., 47 (2017), 2754–2767. https://doi.org/10.1109/TCYB.2017.2692385 doi: 10.1109/TCYB.2017.2692385 |
[25] | P. K. Tripathi, S. Bandyopadhyay, S. K. Pal, Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients, Inf. Sci., 177 (2007), 5033–5049. https://doi.org/10.1016/j.ins.2007.06.018 doi: 10.1016/j.ins.2007.06.018 |
[26] | K. Shibata, H. Nakano, A. Miyauchi, A learning method for dynamic Bayesian network structures using a multi-objective particle swarm optimizer, Artif. Life Rob., 16 (2011), 329–332. https://doi.org/10.1007/s10015-011-0943-7 doi: 10.1007/s10015-011-0943-7 |
[27] | K. Zou, Y. Liu, S. Wang, N. Li, Y. Wu, A multiobjective particle swarm optimization algorithm based on grid technique and multistrategy, J. Math., 2021 (2021), 1626457. https://doi.org/10.1155/2021/1626457 doi: 10.1155/2021/1626457 |
[28] | S. Z. Martínez, C. A. C. Coello, A multi-objective particle swarm optimizer based on decomposition, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, (2011), 69–76. https://doi.org/10.1145/2001576.2001587 |
[29] | Q. Lin, S. Liu, Q. Zhu, C. Tang, R. Song, J. Chen, et al., Particle swarm optimization with a balanceable fitness estimation for many-objective optimization problems, IEEE Trans. Evol. Comput., 22 (2018), 32–46. https://doi.org/10.1109/TEVC.2016.2631279 doi: 10.1109/TEVC.2016.2631279 |
[30] | A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. C. Coello, F. Luna, E. Alba, SMPSO: a new PSO-based metaheuristic for multi-objective optimization, in 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), (2009), 66–73. https://doi.org/10.1109/MCDM.2009.4938830 |
[31] | C. Dai, Y. Wang, M. Ye, A new multi-objective particle swarm optimization algorithm based on decomposition, Inf. Sci., 325 (2015), 541–557. https://doi.org/10.1016/j.ins.2015.07.018 doi: 10.1016/j.ins.2015.07.018 |
[32] | K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ: solving problems with box constraints, IEEE Trans. Evol. Comput., 18 (2013), 577–601. https://doi.org/10.1109/TEVC.2013.2281535 doi: 10.1109/TEVC.2013.2281535 |
[33] | Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11 (2007), 712–731. https://doi.org/10.1109/TEVC.2007.892759 doi: 10.1109/TEVC.2007.892759 |
[34] | Y. Tian, X. Zhang, R. Cheng, Y. Jin, A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric, in 2016 IEEE Congress on Evolutionary Computation (CEC), (2016), 5222–5229. https://doi.org/10.1109/CEC.2016.7748352 |
[35] | S. Jiang, S. Yang, A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization, IEEE Trans. Evol. Comput., 21 (2017), 329–346. https://doi.org/10.1109/TEVC.2016.2592479 doi: 10.1109/TEVC.2016.2592479 |
[36] | Y. Xiang, Y. Zhou, M. Li, Z. Chen, A vector angle-based evolutionary algorithm for unconstrained many-objective optimization, IEEE Trans. Evol. Comput., 21 (2016), 131–152. https://doi.org/10.1109/TEVC.2016.2587808 doi: 10.1109/TEVC.2016.2587808 |
[37] | E. Zitzler, K. Deb, L. Thiele, Comparison of multiobjective evolutionary algorithms: empirical results, Evol. Comput., 8 (2000), 173–195. https://doi.org/10.1162/106365600568202 doi: 10.1162/106365600568202 |
[38] | K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable multi-objective optimization test problems, in Proceedings of the 2002 Congress on Evolutionary Computation, 1 (2002), 825–830. https://doi.org/10.1109/CEC.2002.1007032 |
[39] | Q. Zhang, A. Zhou, Y. Jin, RM-MEDA: a regularity model-based multiobjective estimation of distribution algorithm, IEEE Trans. Evol. Comput., 12 (2008), 41–63. https://doi.org/10.1109/TEVC.2007.894202 doi: 10.1109/TEVC.2007.894202 |
[40] | C. A. C. Coello, N. C. Cortés, Solving multiobjective optimization problems using an artificial immune system, Genet. Program. Evolvable Mach., 6 (2005), 163–190. https://doi.org/10.1007/s10710-005-6164-x doi: 10.1007/s10710-005-6164-x |
[41] | L. While, P. Hingston, L. Barone, S. Huband, A faster algorithm for calculating hypervolume, IEEE Trans. Evol. Comput., 10 (2006), 29–38. https://doi.org/10.1109/TEVC.2005.851275 doi: 10.1109/TEVC.2005.851275 |
[42] | Y. Tian, R. Cheng, X. Zhang, Y. Jin, PlatEMO: a MATLAB platform for evolutionary multi-objective optimization [Educational Forum], IEEE Comput. Intell. Mag., 12 (2017), 73–87. https://doi.org/10.1109/MCI.2017.2742868 doi: 10.1109/MCI.2017.2742868 |
[43] | M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Am. Stat. Assoc., 32 (1937), 675–701. https://doi.org/10.2307/2279372 doi: 10.2307/2279372 |
[44] | Y. Cui, X. Meng, J. Qiao, A multi-objective particle swarm optimization algorithm based on two-archive mechanism, Appl. Soft Comput., 119 (2022), 108532. https://doi.org/10.1016/j.asoc.2022.108532 doi: 10.1016/j.asoc.2022.108532 |