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Abstract: By using the Ornstein-Uhlenbeck (OU) process to simulate random disturbances in the
environment, and considering the influence of jump noise, a stochastic Gilpin-Ayala mutualism model
driven by mean-reverting OU process with Lévy jumps was established, and the asymptotic behaviors of
the stochastic Gilpin-Ayala mutualism model were studied. First, the existence of the global solution of
the stochastic Gilpin-Ayala mutualism model is proved by the appropriate Lyapunov function. Second,
the moment boundedness of the solution of the stochastic Gilpin-Ayala mutualism model is discussed.
Third, the existence of the stationary distribution of the solution of the stochastic Gilpin-Ayala mutualism
model is obtained. Finally, the extinction of the stochastic Gilpin-Ayala mutualism model is proved.
The theoretical results were verified by numerical simulations.

Keywords: stochastic Gilpin-Ayala mutualism model; moment boundedness of solution; extinction;
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1. Introduction

As a common relationship among species, mutualism has been extensively studied by many experts
and scholars. Mutualism models have also received a lot of attention in population dynamics [1–3]. For
example, the Lotka-Volterra mutualism model, the most common model of interspecific relationships,
has the following form [4]

dxi(t) = xi(t)

ri − aiixi(t) +
n∑

j=1, j,i

ai jx j(t)

 dt, i = 1, 2, · · · , n, (1.1)

where xi(t) is the population size, ri is the intrinsic growth rate, aii > 0 is the intraspecific competition
coefficient, and ai j > 0( j , i) is the effect of species j on species i. But, in the classical Lotka-Volterra
mutualism model, the growth rate of each species is a linear function of the interacting species [5],
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which is unreasonable in real life. In order to describe the actual problem more accurately, Ayala and
Gilpin et al. [5] proposed a nonlinear model in 1973

dxi(t) = xi(t)

ri − aiix
θi
i (t) +

n∑
j=1, j,i

ai jx j(t)

 dt, i = 1, 2, · · · , n, (1.2)

where θi denotes the positive parameter of the modified Lotka-Volterra mutualism model.
However, in nature, no species is deterministic and will be affected by various environmental factors.

To describe these random perturbations in the environment, we consider that the growth rate ri of species
in model (1.2) is linearly disturbed by Gaussian white noise [6–9]

ri(t) = ri + σi
dBi(t)

dt
, i = 1, 2, · · · , n.

For any time interval [0, t], let r̃i(t) be the time average of ri(t). Then, we can get

r̃i(t) :=
1
t

∫ t

0
ri(s)ds = ri + σi

Bi(t)
t
∼ N

(
ri,
σ2

i

t

)
, i = 1, 2, · · · , n,

where N(·, ·) is the one-dimensional Gaussian distribution.
However, it is unreasonable to use a linear function of Gaussian white noise to simulate random

perturbations in real life [10]. Obviously, the variance of the average growth rate r̃i tends to∞ at t → 0+.
This causes an unreasonable result that the stochastic fluctuations in the growth rate ri(t) can become
very large in a small time interval [11]. Therefore, some scholars have begun to consider the use of
mean-reverting Ornstein-Uhlenbeck process to simulate random perturbations, that is, the intrinsic
growth rate ri of model (1.2) has the form [12, 13]

dri(t) = βi [r̄i − ri(t)] dt + σidBi(t), i = 1, 2, · · · , n, (1.3)

where βi is the reversion rate, σi is the intensity of environmental fluctuation, r̄i is the mean recovery
level, and βi, σi > 0. The mean reversion of ri(t) to the constant level r̄i when βi > 0 can be inferred
from (1.3): if ri(t) has diffused above r̄i at some time, then the coefficient of the dt drift term is negative,
so ri(t) will tend to move downwards immediately after, with the reverse holding if ri(t) is below r̄i at
some time [14, 15].

Further, we can get the solution of the OU process (1.3). First, by multiplying eβit on both sides
of (1.3) and then sorting, we can get

eβitdri(t) + βieβitri(t)dt = βir̄ieβitdt + σieβitdBi(t).

Then,
d
(
eβitri(t)

)
= βir̄ieβitdt + σieβitdBi(t).

Integrating from 0 to t on the both sides of above formula, we get

eβitri(t) − ri(0) = r̄i(eβit − 1) +
∫ t

0
σieβi sdBi(s).
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Thus, we have

ri(t) = r̄i + [ri(0) − r̄i] e−βit + σi

∫ t

0
e−βi(t−s)dBi(s), (1.4)

where ri(0) is the initial value of the Ornstein-Uhlenbeck process ri(t). Then, we can get the expectation
and variance of ri(t) as follows:

E [ri(t)] = r̄i + [ri(0) − r̄i] e−βit,Var [ri(t)] =
σ2

i

2βi

(
1 − e−2βit

)
.

Thus, ri(t) obeys the Gaussian distribution N
(
r̄i + [ri(0) − r̄i] e−βit,

σ2
i

2βi

(
1 − e−2βit

))
, and

σi

∫ t

0
e−βi(t−s)dBi(s) obeys the Gaussian distribution N

(
0,
σ2

i

2βi

(
1 − e−2βit

))
. From the mean of ri(t), it

should be obvious to see the mean reversion feature: When ri(0) deviates from r̄i either upward or
downward, the degree of deviation decays at the rate of e−βit and approaches r̄i. When t → +∞, the

asymptotic mean and variance are r̄i and
σ2

i

2βi
, respectively, which can be understood as stationary,

long-run equilibrium mean and variance.
But, in real life, in addition to small environmental disturbances such as white noise, there are also

sudden environmental disturbances that cause significant changes in the survival status of species [16],
such as earthquakes, hurricanes, epidemics, and so on [17, 18]. These phenomena cannot be described
by white noise, and the introduction of Lévy jumps in the basic model is a reasonable way to describe
these phenomena [17,18]. So, we construct the following stochastic Gilpin-Ayala mutualism model
driven by the mean-reverting OU process with Lévy jumps,dxi(t) = xi(t−)

[(
ri(t) − aiix

θi
i (t−) +

n∑
j=1, j,i

ai jx j(t−)
)

dt +
∫

Z
γi(z)N(dt, dz)

]
dri (t) = βi [r̄i − ri(t)] dt + σidBi(t),

, i = 1, 2, · · · , n, (1.5)

where xi(t−), i = 1, 2, · · · , n is the left limit of xi(t), modified parameter θi ≥ 1, i = 1, 2, · · · , n,
and Bi(t), i = 1, 2, · · · , n are independent standard Brownian motions defined on the probability space(
Ω,F , {F }t≥0 ,P

)
. N is a Poisson counting measure with characteristic measure v with v (Z) < ∞, and

Z is a measurable subset of (0,∞). Ñ represents a compensating random measure of Poisson random
measure N, defined as Ñ(dt, dz) = N(dt, dz) − v (dz) dt. In order to satisfy the corresponding biological
significance, we assume that for all z ∈ Z, the jump diffusion coefficients γi(z) > −1, i = 1, 2, · · · , n.

The model studied in this paper is improved on the basis of the classical Lotka-Volterra model, which
no longer assumes linear exponential growth of the population and uses the mean reversion OU process
to simulate small perturbations in the environment. This is a more reasonable method than assuming
that the population parameters are linearly disturbed by Gaussian white noise. Furthermore, we also
take into account the sudden disturbance of the population, so we introduce Lévy jumps to construct the
model (1.5) studied in this paper. As far as we know, there are relatively few studies on such models, so
it is very meaningful to study the properties of model (1.5).

For convenience, the following definitions are taken in this article:
For the sequence ci j (1 ≤ i, j ≤ n), we let

č = max
1≤i, j≤n

ci j, ĉ = min
1≤i, j≤n

ci j.

Mathematical Biosciences and Engineering Volume 21, Issue 3, 4117–4141.



4120

For a symmetric matrix A of order n, we define

λ+max(A) = sup
x∈Rn

+,|x|=1
xT Ax.

2. Existence and uniqueness of global solution

Assumption 2.1. For any k ∈ {1, 2, ..., n}, there exists a constant c > 0, and the following inequali-
ties hold:

(1)
∫

Z

[
|ln(1 + γk(z))| ∨ (ln(1 + γk(z)))2

]
v(dz) < c,

(2)
∫

Z
|γk(z)| v(dz) < c,

(3)
∫

Z
|(1 + γk(z))q − 1| v(dz) < c.

Assumption 2.2. For matrix A =


0 a12 · · · a1n

a21 0 · · · a2n
...

...
...

an1 an2 · · · 0

 , there is

1
2
λ+max(A + AT ) < aii, i = 1, 2, · · · , n.

Remark 2.1. Assumption 2.1 indicates that the interference intensity of Lévy noise on the system
should not be too large. Assumption 2.2 shows that although system (1.5) is a mutualism system, the
intensity of intraspecific competition is still greater than the intensity of interactions between species.
Otherwise, if the interference intensity of Lévy noise to the system is too large and the interaction
intensity of species is greater than the intraspecific competition intensity, the solution of the system may
explode in finite time.
Theorem 2.1. If Assumptions 2.1 and 2.2 hold, for any initial value (x(0), r(0)) =

(x1(0), · · · , xn(0), r1(0), · · · , rn(0)) ∈ Rn
+ × R

n, there exists a unique solution (x(t), r(t)) =

(x1(t), · · · , xn(t), r1(t), · · · , rn(t)) of model (1.5) on t ≥ 0, and it remains in Rn
+ × R

n with probabil-
ity one.
Proof. Noting that all the coefficients of model (1.5) satisfy the local Lipschitz condition, for any
initial value (x(0), r(0)), the system has a unique local solution (x(t), r(t)) on t ∈ [0, τe), where τe is the
explosion time of the solution. Therefore, to prove the solution (x(t), r(t)) is global, it is needed to prove
τe = ∞ with probability one only. Hence, we take a sufficiently large p0 > 0 such that each component

of (x(0), er(0)) falls within [
1
p0
, p0]. For each integer p0 greater than p, we define the stopping time

τp = inf
{

t ∈ [0, τe) : xi(t) < (
1
p
, p) or eri(t) < (

1
p
, p), for some i = 1, 2, · · · , n

}
. (2.1)

Obviously, τp is monotonically increasing as p increases. For convenience, let τ∞ = lim
p→∞
τp, then

τ∞ ≤ τe holds with probability one. Therefore, if τ∞ = ∞, then τe = ∞. In the following, we use proof
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by contradiction to prove τ∞ = ∞. Suppose τ∞ = ∞ does not hold with probability one, then there exist
constants T > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T ) > ε. So, there exists p1 ≥ p0 such that

P(τp ≤ T ) ≥ ε, for all p ≥ p1. (2.2)

Defining a C2-function V on Rn
+ × R

n

V(x(t), r(t)) =
n∑

i=1

(
xi(t) − 1 − ln xi(t) +

r4
i (t)
4

)
.

When xi > 0, we have the inequality xi − 1 ≥ ln xi, 1 ≤ i ≤ n, so V is a nonnegative function.

Using the Itô formula, we can get

dV = LVdt +
n∑

i=1

σir3
i dBi(t) +

n∑
i=1

∫
Z

[
xiγi(z) − ln(1 + γi(z))

]
Ñ(dt, dz), (2.3)

where

LV =
n∑

i=1

(xi − 1)(ri − aiix
θi
i +

n∑
j=1, j,i

ai jx j) +
n∑

i=1

βir3
i (r̄i − ri) +

n∑
i=1

3
2
σ2

i r2
i

+

n∑
i=1

∫
Z

[
xiγi(z) − ln(1 + γi(z))

]
v(dz).

(2.4)

Then, there exists a constant N > 0 such that

LV ≤ −
n∑

i=1

aiix
θi+1
i +

n∑
i=1

aiix
θi
i +

n∑
i=1

n∑
j=1, j,i

ai jxix j +

n∑
i=1

rixi −

n∑
i=1

ri +

n∑
i=1

βir̄ir3
i

−

n∑
i=1

βir4
i +

n∑
i=1

3
2
σ2

i r2
i +

n∑
i=1

∫
Z

xiγi(z)v(dz) −
n∑

i=1

∫
Z

ln(1 + γi(z))v(dz)

≤ −

n∑
i=1

aiix
θi+1
i +

n∑
i=1

aiix
θi
i +

n∑
i=1

1
2
λ+max(A + AT )x2

i +

n∑
i=1

|ri| xi +

n∑
i=1

|ri| +

n∑
i=1

βir̄ir3
i

−

n∑
i=1

βir4
i +

n∑
i=1

3
2
σ2

i r2
i +

n∑
i=1

xi

∫
Z
|γi(z)| v(dz) +

n∑
i=1

∫
Z
|ln(1 + γi(z))| v(dz)

≤ N.

(2.5)

Substituting Eq (2.5) into (2.3), we have

dV ≤ Ndt +
n∑

i=1

σir3
i dBi(t) +

n∑
i=1

∫
Z

[
xiγi(z) − ln(1 + γi(z))

]
Ñ(dt, dz). (2.6)

Taking the integral from 0 to τp ∧ T on both sides of Eq (2.6) and taking the expectation, we obtain

EV
(
x(τp ∧ T ), r(τp ∧ T )

)
≤ V (x(0), r(0)) + NE

(
τp ∧ T

)
≤ V (x(0), r(0)) + NT. (2.7)
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When p ≥ p1, let Ωp =
{
τp ≤ T

}
. From Eq (2.2), we can obtain P

(
Ωp

)
≥ ε, and from the definition

of τp, for each ω ∈ Ωp such that one of xi(τp, ω), eri(τp,ω)(i = 1, 2, · · · , n) is equal to p or
1
p

so that

V(x(τp, ω), r(τp, ω)) is not less than (p − 1 − ln p) ,
(

1
p
− 1 + ln p

)
, or

1
4

(ln p)4, we have

V(x(τp, ω), r(τp, ω)) ≥ min
{

p − 1 − ln p,
1
p
− 1 + ln p,

1
4

(ln p)4
}
.

According to Eq (2.7), we can get

V (x(0), r(0)) + NT ≥ E
[
IΩp(ω)V(x(τp, ω), r(τp, ω))

]
≥ εmin

{
p − 1 − ln p,

1
p
− 1 + ln p,

1
4

(ln p)4
}
,

where IΩp(ω) represents the indicator function of Ωp. Let p→ ∞. Then,∞ > V((x(0), r(0)) + NT = ∞,
and thus we have a contradiction. Therefore, τ∞ = ∞ holds with probability one. Theorem 2.1 is proved.

3. Moment boundedness of solution

Assumption 3.1. For any q > 0, there is

n∑
j=1, j,i

(
q

q + 1
· ai j +

1
q + 1

· a ji

)
− aii < 0, i = 1, 2, · · · , n.

Remark 3.1. Assumption 3.1 indicates that, in the mutualism system (1.5), for any species in the system,
the intensity of intraspecific competition is greater than the sum of the weighted average of interspecific
competition intensity, otherwise the system may not have a bounded qth moment.
Theorem 3.1. If Assumptions 2.1 and 3.1 hold, for any initial value (x(0), r(0)) =

(x1(0), · · · , xn(0), r1(0), · · · , rn(0)) ∈ Rn
+ × R

n, the solution (x(t), r(t)) = (x1(t), · · · , xn(t), r1(t), · · · , rn(t))
of model (1.5) has the property that

E [xi(t)]q ≤ κ(q), i = 1, 2, · · · , n

for any q > 0, where κ(q) is a continuous function with respect to q. That is to say, the qth moment of
the solution (x(t), r(t)) is bounded.
Proof. For any q ≥ 2, defining a nonnegative C2-function V : Rn

+ × R
n → R+

V(x(t), r(t)) =
n∑

i=1

 xq
i (t)
q
+

r2q
i (t)
2q

 .
Applying the Itô formula to the function V , we obtain

dV = LVdt +
n∑

i=1

σir
2q−1
i dBi(t) +

n∑
i=1

∫
Z

(
(xi + xiγi(z))q

q
−

xq
i

q

)
Ñ(dt, dz),
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where

LV =
n∑

i=1

xq
i (ri − aiix

θi
i +

n∑
j=1, j,i

ai jx j) +
n∑

i=1

βir
2q−1
i (r̄i − ri) +

n∑
i=1

2q − 1
2
σ2

i r2q−2
i

+

n∑
i=1

∫
Z

(
(xi + xiγi(z))q

q
−

xq
i

q

)
v(dz).

Then,

LV ≤ −
n∑

i=1

aiix
θi+q
i +

n∑
i=1

n∑
j=1, j,i

ai j

qxq+1
i

q + 1
+

xq+1
j

q + 1

 + n∑
i=1

|ri| x
q
i +

n∑
i=1

βir̄ir
2q−1
i

−

n∑
i=1

βir
2q
i +

n∑
i=1

2q − 1
2
σ2

i r2q−2
i +

n∑
i=1

xq
i

q

∫
Z
|(1 + γi(z))q − 1| v(dz)

= −

n∑
i=1

aiix
θi+q
i +

n∑
i=1

n∑
j=1, j,i

(
q

q + 1
· ai j +

1
q + 1

· a ji

)
xq+1

i +

n∑
i=1

|ri| x
q
i +

n∑
i=1

βir̄ir
2q−1
i

−

n∑
i=1

βir
2q
i +

n∑
i=1

2q − 1
2
σ2

i r2q−2
i +

n∑
i=1

xq
i

q

∫
Z
|(1 + γi(z))q − 1| v(dz).

(3.1)

Let η = q min {β1, β2 · · · , βn}. Using the Itô formula again, we have

d
(
eηtV

)
= ηeηtVdt + eηtdV

= ηeηtVdt + eηt
LVdt +

n∑
i=1

∫
Z

(
(xi + xiγi(z))q

q
−

xq
i

q

)
Ñ(dt, dz) +

n∑
i=1

σir
2q−1
i dBi(t)


= eηt (ηV + LV) dt + eηt

 n∑
i=1

∫
Z

(
(xi + xiγi(z))q

q
−

xq
i

q

)
Ñ(dt, dz) +

n∑
i=1

σir
2q−1
i dBi(t)

 .
(3.2)

Integrating from 0 to t on both sides of Eq (3.2) and taking the expected value, we obtain

E
(
eηtV

)
= V(x(0), r(0)) + E

∫ t

0
eηs (ηV + LV) ds. (3.3)

Combining this with Eq (3.1), we have

ηV + LV ≤
n∑

i=1

ηxq
i

q
+

n∑
i=1

ηr2q
i

2q
−

n∑
i=1

aiix
θi+q
i +

n∑
i=1

n∑
j=1, j,i

(
qai j

q + 1
+

a ji

q + 1

)
xq+1

i +

n∑
i=1

|ri| x
q
i

+

n∑
i=1

βir̄ir
2q−1
i −

n∑
i=1

βir
2q
i +

n∑
i=1

2q − 1
2
σ2

i r2q−2
i +

n∑
i=1

xq
i

q

∫
Z
|(1 + γi(z))q − 1| v(dz)

≤ sup
(x,r)∈Rn

+×R
n

 n∑
i=1

ηxq
i

q
+

n∑
i=1

ηr2q
i

2q
−

n∑
i=1

aiix
θi+q
i +

n∑
i=1

n∑
j=1, j,i

(
qai j

q + 1
+

a ji

q + 1

)
xq+1

i

+

n∑
i=1

|ri| x
q
i +

n∑
i=1

βir̄ir
2q−1
i −

n∑
i=1

βir
2q
i +

n∑
i=1

2q − 1
2
σ2

i r2q−2
i

+

n∑
i=1

xq
i

q

∫
Z
|(1 + γi(z))q − 1| v(dz)

 := κ1(q).

(3.4)
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Substituting Eq (3.4) into (3.3), we get

E
(
eηtV

)
≤ V(x(0), r(0)) + E

∫ t

0
eηsκ1(q)ds.

Then,

eηtEV ≤ V(x(0), r(0)) +
eηt − 1
η
κ1(q).

Further,
lim sup

t→∞
E

[
xq

i (t)
]
≤ q lim sup

t→∞
EV(x(t), r(t))

≤ q lim sup
t→∞

(
V(x(0), r(0))

eηt
+

eηt − 1
ηeηt

κ1(q)
)

=
qκ1(q)
η

:= κ2(q), i = 1, 2, · · · , n.

This means E
[
xq

i (t)
]
≤ κ2(q), i = 1, 2, · · · , n,∀t ≥ 0, q ≥ 2. According to Hölder’s inequality, for any

q̃ ∈ (0, 2), we obtain

E
[
xq̃

i (t)
]
≤

(
E

[
x2

i (t)
]) q̃

2
≤ (κ2(2))

q̃
2 , i = 1, 2, · · · , n.

Let κ(q) = max
{
κ2(q), (κ2(2))

q̃
2

}
. Then,

E
[
xq

i (t)
]
≤ κ(q), i = 1, 2, · · · , n,∀q > 0.

Theorem 3.1 is proved.
Remark 3.1. Similar to the proof of Theorem 3.1, we have E [ri(t)]2q ≤ Q(q), i = 1, 2, · · · , n,∀q > 0.

4. Existence of a stationary distribution

In this section, we give sufficient conditions for the existence of the stationary distribution of the
solution of model (1.5), which reflects the persistence of species over long periods of time and is
an important asymptotic property of population development. Many scholars have also studied the
stability of the system. For example, Shao [19, 20] studied the asymptotic stability in the distribution
of stochastic predator-prey system with S-type distributed time delays, regime switching, and Lévy
jumps, and also studied the stationary distribution of predator-prey models with Beddington-DeAngelis
function response and multiple delays in a stochastic environment, and used different methods to analyze
the stability of the systems according to the different disturbances on the models; Liu et al. [21] gave
sufficient conditions for the distribution stability of a two-prey one-predator model with Lévy jumps.
Before giving the theorem of the existence of stationary distributions, we give several lemmas.

Assumption 4.1. aii −
n∑

j=1, j,i
a ji > 0, βi > 1, i = 1, 2, · · · , n.

Remark 4.1. Assumption 4.1 shows that the impact of intraspecific competition intensity on population
density is greater than the sum of the growing-promoting effects of other species on the species, and
the reversion rate of the intrinsic growth rate under the interference of OU processes should not be too
small. Otherwise, the system may not have a stationary distribution.
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Lemma 4.1. Let Xa(t) = (x1(t), · · · , xn(t), r1(t), · · · , rn(t)) and Xã(t) = (x̃1(t), · · · , x̃n(t), r̃1(t), · · · , r̃n(t))
be solutions of model (1.5) with initial values of a = (x1(0), · · · , xn(0), r1(0), · · · , rn(0)) ∈ D and ã =
((x̃1(0), · · · , x̃n(0), r̃1(0), · · · , r̃n(0)) ∈ D, where D is any compact subset of Rn

+ × R
n. If Assumptions 2.1

and 4.1 hold, then the following equation holds:

lim
t→+∞

(E |x1(t) − x̃1(t)| + · · · + E |xn(t) − x̃n(t)| + E |r1(t) − r̃1(t)| + · · · + E |rn(t) − r̃n(t)|) = 0, a.s..

Proof. Defining a function W

W = |ln x1 − ln x̃1| + · · · + |ln xn − ln x̃n| + |r1 − r̃1| + · · · + |rn − r̃n| .

Then, we obtain

d+W =
n∑

i=1

(sgn(xi − x̃i)d(ln xi − ln x̃i) + sgn(ri − r̃i)d(ri − r̃i))

=

n∑
i=1

sgn(xi − x̃i)

(ri − r̃i) − aii(xθii − x̃θii ) +
n∑

j=1, j,i

ai j(x j − x̃ j)

 dt +
n∑

i=1

sgn(ri − r̃i)
[
−βi(ri − r̃i)

]
dt

≤ −

n∑
i=1

aii

∣∣∣xθii − x̃θii

∣∣∣ dt +
n∑

i=1

n∑
j=1, j,i

ai j

∣∣∣x j − x̃ j

∣∣∣ dt −
n∑

i=1

(βi − 1) |ri − r̃i| dt.

(4.1)
Taking the integral on both sides of Eq (4.1) and taking the expectation, we obtain

EW ≤ W(0) −
n∑

i=1

aii

∫ t

0
E

∣∣∣xθii − x̃θii

∣∣∣ ds +
n∑

i=1

n∑
j=1, j,i

ai j

∫ t

0
E

∣∣∣x j − x̃ j

∣∣∣ ds −
n∑

i=1

(βi − 1)
∫ t

0
E |ri − r̃i| ds.

Noting EW(t) ≥ 0, we then have

n∑
i=1

aii

∫ t

0
E

∣∣∣xθii − x̃θii

∣∣∣ ds −
n∑

i=1

n∑
j=1, j,i

ai j

∫ t

0
E

∣∣∣x j − x̃ j

∣∣∣ ds +
n∑

i=1

(βi − 1)
∫ t

0
E |ri − r̃i| ds ≤ W(0). (4.2)

Let θi = 1, i = 1, 2, · · · , n. Then,

n∑
i=1

aii −

n∑
j=1, j,i

a ji

 ∫ t

0
E |xi − x̃i| ds +

n∑
i=1

(βi − 1)
∫ t

0
E |ri − r̃i| ds ≤ W(0).

Thus, according Assumption 4.1, we have

E |xi − x̃i| ∈ L1[0,+∞), i = 1, 2, · · · , n.

Therefore, according (4.2), we get

n∑
i=1

aii

∫ t

0
E

∣∣∣xθii − x̃θii

∣∣∣ ds +
n∑

i=1

(βi − 1)
∫ t

0
E |ri − r̃i| ds ≤ W(0) +

n∑
i=1

n∑
j=1, j,i

ai j

∫ t

0
E

∣∣∣x j − x̃ j

∣∣∣ ds ≤ +∞.

Then, we have
E

∣∣∣xθii − x̃θii

∣∣∣ ∈ L1[0,+∞),E |ri − r̃i| ∈ L1[0,+∞), i = 1, 2, · · · , n.
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According to model (1.5), there are

E(xi(t)) = x(0) +
∫ t

0

E(ri(s)xi(s)) − E(aiix
θi+1
i (s)) +

n∑
j=1, j,i

ai jE(xi(s)x j(s))

 ds +
∫ t

0
E(xi(s))

∫
Z
γi(z)v(dz)ds,

E(ri(t)) = ri(0) +
∫ t

0

[
E(βir̄i) − E(βiri(s))

]
ds, i = 1, 2, · · · , n.

Therefore, E(xi(t)) and E(ri(t)), i = 1, 2, · · · , n, are continuously differentiable. According to Theo-
rem 3.1 and Remark 3.1, we have

dE(xi(t))
dt

≤
1
2
E(x2

i (t) + |ri(t)|2) +
1
2

n∑
j=1, j,i

ai jE(x2
i (t) + x2

j(t)) + cE(xi(t))

≤
1
2

(κ(2) + Q(1)) + (n − 1)ǎκ(2) + cκ(1),

dE(ri(t))
dt

≤ βi |r̄i| + βiE |ri(t)| ≤ βi |r̄i| + βiQ(1)
1
2 .

So, E(xi(t)),E(ri(t)), i = 1, 2, · · · , n, are uniformly continuous. According to the Barbalat lemma, it can
be concluded that lim

t→+∞
E |xi − x̃i| = 0, lim

t→+∞
E |ri − r̃i| = 0, a.s., and therefore Lemma 4.1 is proven.

Here, in order to prove the following lemma, we introduce the following symbols. Define B(Rn
+ ×R

n)
as the set of all probability measures on Rn

+ ×R
n, and for any two measures p1, p2 ∈ B, define the metric

dH as

dH(p1, p2) = sup
h∈H

∣∣∣∣∣∣
∫
Rn
+×R

n
h(x)p1(dx) −

∫
Rn
+×R

n
h(x)p2(dx)

∣∣∣∣∣∣ ,
where H =

{
h : Rn

+ × R
n → R | |h(x) − h(y)| ≤ |x − y| , |h(·)| ≤ 1

}
.

Lemma 4.2. If Assumptions 2.1 and 4.1 hold, for any a ∈ Rn
+ × R

n, {p(t, a, ·) | t ≥ 0} is the Cauchy
sequence in the space B(Rn

+ × R
n) with metric dH.

Proof. For any fixed a ∈ Rn
+ × R

n, we only need to prove for any ε > 0 that there is a T > 0 such that

dH (p(t + s, a, ·), p(t, a, ·)) ≤ ε,∀t ≥ T, s > 0.

This is equivalent to prove

sup
h∈H
|Eh(Xa(t + s)) − Eh(Xa(t))| ≤ ε,∀t ≥ T, s > 0. (4.3)

For any h ∈ H, t, s > 0, we have

|Eh(Xa(t + s)) − Eh(Xa(t))| = |E [E(h(Xa(t + s)) | Fs] − Eh(Xa(t))|

=

∣∣∣∣∣∣
∫
Rn
+×R

n
Eh(Xz0(t))p(s, a, dz0) − Eh(Xa(t))

∣∣∣∣∣∣
≤

∫
Rn
+×R

n
|Eh(Xz0(t)) − Eh(Xa(t))| p(s, a, dz0)

≤ 2p(s, a, D̄c
R) +

∫
D̄R
|Eh(Xz0(t)) − Eh(Xa(t))| × p(s, a, dz0),

(4.4)
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where D̄R =
{
a ∈ Rn

+ × R
n | |a| ≤ R

}
, D̄c
R = (Rn

+ × R
n) − D̄R. According to Chebyshev’s inequality, the

transition probability {p(t, a, dz0 | t ≥ 0)} is compact, i.e., for any ε > 0, there exists a compact subset
D = D(ε, a) over Rn

+ × R
n such that p(t, a,D) ≥ 1 − ε,∀t ≥ 0, where R is sufficiently large and we have

p(s, a, D̄c
R) <

ε

4
,∀s ≥ 0. (4.5)

According to Lemma 4.1, there exists T > 0 such that

sup
h∈H
|Eh(Xz0(t)) − Eh(Xa(t))| <

ε

2
,∀t > T, z0 ∈ D̄R. (4.6)

Substituting Eqs (4.5) and (4.6) into (4.4), we have

|Eh(Xa(t + s)) − Eh(Xa(t))| < ε,∀t ≥ T, s > 0. (4.7)

Since h is arbitrary, inequality (4.3) holds.
Lemma 4.3 [22]. Let M(t), t ≥ 0, be a local martingale with initial value M(0) = 0. If lim

t→+∞
ρM(t) < ∞,

then lim
t→+∞

M(t)
t
= 0 where ρM(t) =

∫ t

0

d ⟨M,M⟩ (s)
(1 + s)2 , t ≥ 0, and ⟨M,M⟩ (t) is the quadratic variational

process of M(t).
Lemma 4.4. If Assumption 2.1 holds, the solutions of model (1.5) follow that

lim sup
t→∞

ln xi(t)
t
≤ 0, i = 1, 2, · · · , n, a.s.. (4.8)

Proof. Defining a function W(t) =
(

n∑
i=1

xi(t)
)q

= w(t)q, q ≥ 1, using the Itô formula, we can get

LW = q

 n∑
i=1

xi(t)

q−1 n∑
i=1

rixi − aiix
θi+1
i +

n∑
j=1, j,i

ai jxix j

 + n∑
i=1

xq
i

∫
Z

[
(1 + γi(z))q − 1

]
v(dz)

≤ qwq−1

 n∑
i=1

|ri| xi +

n∑
i=1

1
2
λ+max(A + AT )x2

i

 + n∑
i=1

cxq
i

≤ qwq
n∑

i=1

|ri| + qn
1
2

∣∣∣λ+max(A + AT )
∣∣∣ wq+1 + ncwq

≤

n∑
i=1

q
2q + 1

|ri|
2q+1 + n

2q2

2q + 1
wq+ 1

2 + qn
1
2

∣∣∣λ+max(A + AT )
∣∣∣ wq+1 + ncwq.

Let θ > 0 be sufffciently small and satisfy mθ ≤ t ≤ (m + 1)θ,m = 1, 2, ... . It follows that

E

[
sup

mθ≤t≤(m+1)θ
wq(t)

]
= E [wq(mθ)] + I,
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where

I = E
[

sup
mθ≤t≤(m+1)θ

∣∣∣∣∣∣
∫ t

mθ
LWds

∣∣∣∣∣∣
]

≤ E

 sup
mθ≤t≤(m+1)θ

∣∣∣∣∣∣∣
∫ t

mθ

 n∑
i=1

q
2q + 1

|ri|
2q+1 +

2nq2

2q + 1
wq+ 1

2 +
qn
2

∣∣∣λ+max(A + AT )
∣∣∣ wq+1 + ncwq

 ds

∣∣∣∣∣∣∣


≤
2nq2

2q + 1
E

[∫ (m+1)θ

mθ
wq+ 1

2 (s)ds
]
+

qn
2

∣∣∣λ+max(A + AT )
∣∣∣E [∫ (m+1)θ

mθ
wq+1(s)ds

]
+ ncE

[∫ (m+1)θ

mθ
wq(s)ds

]
+

n∑
i=1

q
2q + 1

E

[∫ (m+1)θ

mθ
|ri(s)|2q+1 ds

]
≤

2nq2

2q + 1
θE

[
sup

mθ≤t≤(m+1)θ
wq+ 1

2 (t)
]
+

qnθ
2

∣∣∣λ+max(A + AT )
∣∣∣E [

sup
mθ≤t≤(m+1)θ

wq+1(t)
]
+ ncθE

[
sup

mθ≤t≤(m+1)θ
wq(t)

]
+

q
2q + 1

θ

n∑
i=1

E

[
sup

mθ≤t≤(m+1)θ
|ri(t)|2q+1

]
.

Choose θ sufffciently small such that I < h(q). Therefore,

E

[
sup

mθ≤t≤(m+1)θ
wq(t)

]
≤ 2h(q).

Let ε be an arbitrary positive constant. Based on Chebyshev’s inequality, it follows that

P

{
sup

mθ≤t≤(m+1)θ
wq(t) > (mθ)1+ε

}
≥

2h(q)
(mθ)1+ε ,m = 1, 2, · · · .

By the Borel–Cantelli lemma, there exists an integer-valued random variable m0(ω) such that for almost
all ω ∈ Ω, when m ≥ m0, we have

sup
mθ≤t≤(m+1)θ

wq(t) ≤ (mθ)1+ε.

Hence, for almost all ω ∈ Ω, if m ≥ m0 and mθ ≤ t ≤ (m + 1)θ, we have

lim sup
t→∞

ln wq(t)
ln t

≤ lim sup
t→∞

(1 + ε) ln(mθ)
ln(mθ)

.

Letting ε→ 0, we have

lim sup
t→∞

ln wq(t)
ln t

≤ 1, a.s.,

then,

lim sup
t→∞

ln w(t)
ln t

≤
1
q
, a.s..

Thus,

lim sup
t→∞

ln w(t)
t
≤ lim sup

t→∞

ln w(t)
ln t

× lim sup
t→∞

ln t
t
≤ 0,
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and it follows that
lim sup

t→∞

ln xi(t)
t
≤ 0, i = 1, 2, · · · , n, a.s..

Lemma 4.5. If Assumption 2.1 holds, r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds > 0, i = 1, 2, · · · , n, then

populations xi(t) are weak persistent, a.s..
Proof. According to the definition of weak persistence, we need to prove lim sup

t→∞
xi(t) > 0, i = 1, 2, · · · , n.

If the conclusion is not true, then P(U) > 0, where U =
{
ω : lim sup

t→∞
xi(t, ω) = 0, i = 1, 2, · · · , n

}
.

Applying the Itô formula to ln xi(t) and integrating from 0 to t, we have

ln xi(t)
t
=

ln xi(0)
t
+

1
t

∫ t

0

ri − aiix
θi
i +

n∑
j=1, j,i

ai jx j

 ds +
1
t

∫ t

0

∫
Z

ln (1 + γi(z)) v(dz)ds +
Mi(t)

t
,

(i = 1, 2, · · · , n),

(4.9)

where

Mi(t) =
∫ t

0

∫
Z

ln (1 + γi(z)) Ñ(ds, dz), i = 1, 2, · · · , n.

By Assumption 2.1,

⟨Mi,Mi⟩ (t) =
∫ t

0

∫
Z

[
ln (1 + γi(z))

]2 v(dz)ds < ct, i = 1, 2, · · · , n.

From Lemma 4.3, we obtain

lim
t→∞

Mi(t)
t
= 0, i = 1, 2, · · · , n.

On the one hand, combining the strong law of large numbers [22] and the definition of the Orn-
stein–Uhlenbeck process, we have

lim
t→∞

1
t

∫ t

0
ri(s)ds = r̄i, i = 1, 2, · · · , n.

If for all ω ∈ U, lim sup
t→∞

xi(t, ω) = 0, i = 1, 2, · · · , n, combining with Eq (4.9) we have

0 ≥ lim sup
t→∞

ln xi(t, ω)
t

= r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds > 0, i = 1, 2, · · · , n.

As this contradicts the assumption P(U) > 0, then lim sup
t→∞

xi(t) > 0, i = 1, 2, · · · , n.

Theorem 4.1. If Assumptions 2.1 and 4.1 hold, r̄i+lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1+γi(z))v(dz)ds > 0, i = 1, 2, · · · , n,

and then model (1.5) has a unique ergodic stationary distribution.
Proof. To prove Theorem 4.1, first prove that there is a probability measure η(·) ∈ B such that for any
a ∈ Rn

+ × R
n, the transition probability p(t, a, ·) for Xa(t) converges weakly to η(·).

According to Proposition 2.5 [23], weak convergence of probability measures is the concept of a
metric, i.e., p(t, a, ·) weakly converging to η(·) is equivalent to the existence of a metric d such that
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lim
t→+∞

d (p(t, a, ·), η(·)) = 0.
So, we only need to prove that, for any a ∈ Rn

+ × R
n, there is

lim
t→+∞

dH (p(t, a, ·), η(·)) = 0.

From Lemma 4.2, {p(t, 0, · | t ≥ 0)} is the Cauchy sequence in the space B(Rn
+ × R

n) of the metric dH.
So, there is a unique η(·) ∈ B such that

lim
t→+∞

dH (p(t, 0, ·), η(·)) = 0.

By Lemma 4.1 and the triangle inequality, we have

lim
t→+∞

dH (p(t, a, ·), η(·)) ≤ lim
t→+∞

[
dH (p(t, a, ·), p(t, 0, ·)) + dH (p(t, 0, ·), η(·))

]
= 0.

That is, the distribution of X(t) weakly converges to η.
By the Kolmogorov-Chapman equation, we know that η is constant. From Corollary 3.4.3 [24], it

follows that η is strongly mixed. From Theorem 3.2.6 [24], we know that η is ergodic.

5. Extinction

In this section, we give sufficient conditions for species extinction. For convenience, model (1.5) is
written in matrix form asdx(t) = diag(x1(t−), x2(t−), · · · , xn(t−))

[(
r(t) − S xθ(t−) + Ax(t−)

)
dt +

∫
Z
γ(z)N(dt, dz)

]
dr(t) = diag(β1, β2, · · · , βn)[r̄ − r(t)]dt + σdB(t),

(5.1)

where

x(t−) = (x1(t−), x2(t−), · · · , xn(t−))T , r(t) = (r1(t), r2(t), · · · , rn(t))T , S = diag(a11, a22, · · · , ann),

xθ(t−) = (xθ11 (t−), xθ22 (t−), · · · , xθnn (t−))T , A = (a jh)n×n(a j j = 0), γ(z) = (γ1(t), γ2(t), · · · , γn(t))T ,

r̄ = (r̄1, r̄2, · · · , r̄n)T , σ(z) = (σ1(t), σ2(t), · · · , σn(t))T .

Assumption 5.1. There exists a set of positive constants c1, c2, · · · , cn such that

λ+max

(
1
2

(CA + ATC) −CS
)
≤ 0

holds , where C = diag(c1, c2, · · · , cn).
Remark 5.1. In Assumption 5.1, the introduction of the constant ci, i = 1, 2, · · · , n, indicates that the
intraspecific competition intensity of the i-th population and the interspecific interaction intensity of the
i-th population to the other n − 1 species changes by ci times. If ci ≥ 1, the intraspecific competition
intensity and interspecific competition intensity increase by ci times; if ci < 1, it is weakened by ci

times. Assumption 5.1 means that, under the action of ci, the intraspecific competition intensity of each
species is greater than the average of the action intensity of the species on other species and the action
intensity of other species on the species. Otherwise, the population might not go extinct.
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Theorem 5.1. If Assumptions 2.1 and 5.1 hold, for any initial value (x(0), r(0)) ∈ Rn
+ × R

n, the solution
(x(t), r(t)) of system (5.1) has the property that

lim sup
t→∞

ln |x(t)|
t
≤ max

1≤i≤n
r̄i +max

1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
+ lim sup

t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds, a.s..

In particular, if max
1≤i≤n

r̄i + max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
+ lim sup

t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds < 0, it implies

lim
t→∞
|x(t)| = 0 , and then x(t) is extinct, a.s..

Proof. Define a Lyapunov function

V(x) = cT x =
n∑

i=1

cixi, x ∈ Rn
+,

where c = (c1, c2, · · · , cn)T .
Applying the Itô formula, we can get

dV(x) = xTC
[
r(t) − S xθ(t) + Ax(t)

]
dt +

∫
Z

xTCγ(z)N(dt, dz).

Using the Itô formula for ln V(x) again, we have

d ln V(x) =
1
V
· xTC

[
r(t) − S xθ(t) + Ax(t)

]
dt +

∫
Z

[
ln(V(x) + xTCγ(z)) − ln V(x)

]
N(dt, dz)

=
1
V
· xTC

[
r(t) − S xθ(t) + S x(t) − S x(t) + Ax(t)

]
dt +

∫
Z

[
ln(V(x) + xTCγ(z))

− ln V(x)] N(dt, dz),

where
1
V
· xTCr(t) ≤ max

1≤i≤n
ri(t),

1
V
· xTC

[
−S xθ(t) + S x(t)

]
≤ max

1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
,

where we use the fact −aiix
θi
i + aiixi ≤ aii(θi − 1)θ

−
θi
θi−1

i , i = 1, 2, · · · , n, and

1
V
· xTC [−S x(t) + Ax(t)] ≤

λ+max

(
1
2

(CA + ATC) −CS
)
|x(t)|

ĉ
≤ 0,∫

Z

[
ln(V(x) + xTCγ(z)) − ln V(x)

]
N(dt, dz) ≤

∫
Z

ln(1 + γ̌(z))N(dt, dz).

Substituting the above four inequalities into d ln V(x), we get

d ln V(x) ≤ max
1≤i≤n

ri(t) +max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
+

∫
Z

ln(1 + γ̌(z))v(dz)dt +
∫

Z
ln(1 + γ̌(z))Ñ(dt, dz).
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Integrating from 0 to t, we have

ln V(x(t)) − ln V(x(0)) ≤
∫ t

0
max
1≤i≤n

ri(s)ds +
∫ t

0
max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
ds

+

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds + M(t),
(5.2)

where

M(t) =
∫ t

0

∫
Z

ln(1 + γ̌(z)Ñ(ds, dz).

By Assumption 2.1,

⟨M,M⟩ (t) =
∫ t

0

∫
Z

[
ln(1 + γ̌(z))

]2 v(dz)ds < ct.

From Lemma 4.3, we achieve

lim
t→∞

M(t)
t
= 0.

On the one hand, combining the strong law of large numbers [22] and the definition of the Orn-
stein–Uhlenbeck process, we have

lim
t→∞

1
t

∫ t

0
ri(s)ds = r̄i, i = 1, 2, · · · , n.

Then,

lim
t→∞

1
t

∫ t

0
max
1≤i≤n

ri(s)ds ≤ max
1≤i≤n

lim
t→∞

1
t

∫ t

0
ri(s)ds = max

1≤i≤n
r̄i.

According to Eq (5.2), we obtain

ln V(x(t)) − ln V(x(0))
t

≤
1
t

∫ t

0
max
1≤i≤n

ri(s)ds +
1
t

∫ t

0
max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
ds

+
1
t

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds +
1
t

M(t).
(5.3)

Taking the upper limit on both sides of Eq (5.3), we get

lim sup
t→∞

1
t

ln V(x(t)) ≤ max
1≤i≤n

r̄i +max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
+ lim sup

t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds, a.s..

When max
1≤i≤n

r̄i +max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
+ lim sup

t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds < 0, it implies lim
t→∞
|x(t)| = 0,

then x(t) is extinct, a.s.. Theorem 5.1 is proved.
Remark 5.1. Lemma 4.5 and Theorems 4.1 and 5.1 have very important biological explanations.

From the theoretical results obtained, it can be seen that when r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds >

0, i = 1, 2, · · · , n, population xi(t), i = 1, 2, · · · , n, will be weakly persistent, and if the parame-
ters of model (1.5) satisfy the conditions of Assumption 4.1, the system has a stationary distribu-

tion, which indicates the persistence of population growth. When max
1≤i≤n

r̄i + max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
+
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lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds < 0, and the parameters of model (1.5) satisfy the conditions of

Assumption 5.1, population x(t) = (x1(t), · · · , xn(t)) will be extinct. That is, for every 1 ≤ i ≤ n, when

r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds < −aii(θi − 1)θ
−
θi
θi−1

i , population xi(t), i = 1, 2, · · · , n, will be

extinct. So, the survival and extinction of the biological population of model (1.5) completely depend

on the value of r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds.

Remark 5.2. In the following we analyze the effects of white noise simulated by the Ornstein-Uhlenbeck
(OU) process on species survival and extinction. Since the OU process acts on the intrinsic growth rate
ri, i = 1, 2, · · · , n, if model (1.5) is not affected by jump noise, the model takes the following form:dxi(t) = xi(t)

[
ri(t) − aiix

θi
i (t) +

n∑
j=1, j,i

ai jx j(t)
]

dt

dri (t) = βi [r̄i − ri(t)] dt + σidBi(t),
, i = 1, 2, · · · , n.

Using a similar method as above, it can be proved that when r̄i > 0, i = 1, 2, · · · , n, populations

xi(t), i = 1, 2, · · · , n, are weakly persistent; when max
1≤i≤n

r̄i + max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
< 0, population

x(t) = (x1(t), · · · , xn(t)) will be extinct. That is, when r̄i < −aii(θi − 1)θ
−
θi
θi−1

i , i = 1, 2, · · · , n, populations
xi(t), i = 1, 2, · · · , n, are extinct. Thus, when the system is only disturbed by OU process, the survival
and extinction of the population is only related to the value of the average growth rate r̄i, i = 1, 2, · · · , n,
of the population.

When r̄i > 0, i = 1, 2, · · · , n, the species only disturbed by the OU process are weakly persistent.

If the system is affected by jump noise and satisfies r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds <

−aii(θi − 1)θ
−
θi
θi−1

i , i = 1, 2, · · · , n, the species are extinct. When r̄i < −aii(θi − 1)θ
−
θi
θi−1

i , i = 1, 2, · · · , n,
the species that are only disturbed by the OU process are extinct, but if there are jump noises such that

r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds > 0, i = 1, 2, · · · , n, the species are weakly persistent. Therefore,

it can be obtained that jump noise can make the survival system extinct and the extinction system survive.
Remark 5.3. In the following we analyze the effect of the jump diffusion coefficient γi(z), i = 1, 2, · · · , n,

on population survival and extinction. If γi(z) < 0, i = 1, 2, · · · , n, then lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 +

γi(z))v(dz)ds < 0, i = 1, 2, · · · , n, means that jump noise could accelerate the extinction; if γi(z) >

0, i = 1, 2, · · · , n, then lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds > 0, i = 1, 2, · · · , n, means that jump noise is

beneficial to the survival of the population.

6. Computer simulations

In order to verify the above theoretical results on the stochastic Gilpin-Ayala mutualism
model (1.5), we use the Euler-Maruyama method [25] and the R language, and select appropriate
parameters for numerical verification. The combination of parameters is shown in Table 1, and
the data is from [11, 26–29]. Consider the following stochastic Gilpin-Ayala mutualism model for
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two populations:
dx1(t) = x1(t−)

[(
r1(t) − a11xθ11 (t−) + a12(t)x2(t−)

)
dt +

∫
Z
γ1(z)N(dt, dz)

]
dx2(t) = x2(t−)

[(
r2(t) − a22xθ22 (t−) + a21(t)x1(t−)

)
dt +

∫
Z
γ2(z)N(dt, dz)

]
dr1(t) = β1 [r̄1 − r1(t)] dt + σ1dB1(t)
dr2(t) = β2 [r̄2 − r2(t)] dt + σ2dB2(t),

(6.1)

Table 1. Several combinations of biological parameters of model (6.1).

Combinations Value
A1 a11 = 0.5, a12 = 0.2, a21 = 0.1, a22 = 0.4, θ1 = 1, θ2 = 1, γ1 = 0.4, γ2 = 0.2, β1 =

2, β2 = 2, r̄1 = 0.3, r̄2 = 0.2, σ1 = 0.5, σ2 = 0.3
A2 a11 = 0.55, a12 = 0.22, a21 = 0.21, a22 = 0.46, θ1 = 1.2, θ2 = 1.5, γ1 = 0.4, γ2 =

0.2, β1 = 2, β2 = 2, r̄1 = 0.3, r̄2 = 0.2, σ1 = 0.5, σ2 = 0.3, q = 2
A3 a11 = 0.28, a12 = 0.12, a21 = 0.18, a22 = 0.26, θ1 = 1.3, θ2 = 2, γ1 = 0.25, γ2 =

0.2, β1 = 1.3, β2 = 1.3, r̄1 = 0.3, r̄2 = 0.3, σ1 = 0.6, σ2 = 0.7
A4 a11 = 0.4, a12 = 0.16, a21 = 0.12, a22 = 0.5, θ1 = 2, θ2 = 2, γ1 = 0.1, γ2 = 0.2, β1 =

2, β2 = 2, r̄1 = −0.35, r̄2 = −0.3, σ1 = 0.5, σ2 = 0.3

Example 6.1. Letting v(Z) = 1, and take the initial value of model (6.1) as x1(0) = 0.11, x2(0) =
0.2, r1(0) = 0.2, r2(0) = 0.1, choosing the combinationA1 as the parameter values of model (6.1), and
using the R language for numerical simulation, Figure 1 is obtained. By calculating, we have

1
2
λ+max(A + AT ) − a11 ≈ 0.15 − 0.5 = −0.35 < 0,

1
2
λ+max(A + AT ) − a22 ≈ 0.15 − 0.4 = −0.25 < 0.

Then, Assumption 2.2 is satisfied. According to Theorem 2.1, the global solution of the stochastic
Gilpin-Ayala population model (6.1) exists.

The red lines in Figure 1(a),(b) represent the solutions of populations x1, x2 in a deterministic
environment without any disturbance. It can be seen that the development trend of the population is
a smooth curve, and the population will not explode due to the limitation of environmental resources.
The blue lines in Figure 1(a),(b) show the variation trend of the populations x1, x2 whose growth rate
is disturbed by the OU process. The green lines in Figure 1(a),(b) represent the global solution of the
population under the disturbance of the OU process and Lévy noise, and since the jump noise values are
both positive, it indicates that the jump noise plays a role in promoting the population growth. Combined
with the figure, it can be found that, compared with the other two situations, the population number
also increases significantly at the same time under the positive Lévy jump interference. Lévy jumps
represent some disturbances in the environment that cause sudden changes in the survival condition of
the population. For example, when t = 16, t = 22 in Figure 1(a),(b), we can also see that the population
number changes suddenly, which indicates the effect of Lévy jumps on the population.

The red lines in Figure 1(c),(d) represent intrinsic growth rates r1, r2, while the blue lines in Fig-
ure 1(c),(d) represent population growth rates disturbed by the OU process, indicating that the interfer-
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ence of random environmental factors will make the growth rate r1(t), r2(t) fluctuate randomly under the
interference of the OU process.
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Figure 1. Global solution of stochastic system (6.1) with stochastic noises (σ1, σ2) =
(0.5, 0.3): (a),(b) are the global solution of x1(t) and x2(t) in three cases; (c),(d) are the
global solution of r1(t) and r2(t) in two cases. The relevant parameters are determined by the
combinationA1.

Example 6.2. Letting v(Z) = 1, taking the initial value of model (6.1) as x1(0) = 0.11, x2(0) =
0.2, r1(0) = 0.2, r2(0) = 0.1, choosing the combinationA2 as the parameter values of model (6.1), and
using the R language for numerical simulation, Figure 2 is obtained. By calculating, we obtain

(
q

q + 1
a12 +

1
q + 1

a21

)
− a11 ≈ −0.34 < 0,(

q
q + 1

a21 +
1

q + 1
a12

)
− a22 ≈ −0.25 < 0.

Then, Assumption 3.1 is satisfied. The numerical simulation results show that E(xq
1),E(xq

2) are less than
κ(q), so E(xq

1) ≤ κ(q),E(xq
2) ≤ κ(q), q > 0 hold, and Theorem 3.1 is verified.

From the biological point of view, since the environmental resources are limited, no biological
population can grow indefinitely, so we hope that the system solution is ultimately bounded. In Figure 2,
letting q = 2, we have E(x2

1) ≤ κ(2),E(x2
2) ≤ κ(2), which indicates that the final second moment of the

population is bounded, which conforms to the laws of survival in the real world.
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Figure 2. Moment boundedness of solution of stochastic system (6.1) with q = 2. The
relevant parameters are determined by the combinationA2.

Example 6.3. Letting v(Z) = 1, taking the initial value of model (6.1) as x1(0) = 0.11, x2(0) =
0.2, r1(0) = 0.2, r2(0) = 0.2, choosing the combinationA3 as the parameter values of model (6.1), and
using the R language for numerical simulation, Figure 3 is obtained. By calculating, we get

a11 − a21 = 0.28 − 0.18 = 0.1 > 0, a22 − a12 = 0.26 − 0.12 = 0.14 > 0,

r̄1 + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ1(z))v(dz)ds ≈ 0.3 + 0.223 ≈ 0.523 > 0,

r̄2 + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ2(z))v(dz)ds ≈ 0.3 + 0.18 ≈ 0.48 > 0.

0

2

4

6

0 1000 2000 3000
 Time t

x 1
(t)

(a) x1(t)

0

2000

4000

6000

8000

0 2 4 6

(b) The histogram of the population  x1(t)

0

1

2

3

4

0 1000 2000 3000
 Time t

x 2
(t)

(c) x2(t)

0

2000

4000

6000

8000

0 1 2 3 4

(d) The histogram of the population  x2(t)

Figure 3. Existence of stationary distribution. Left-hand panels show the simulations of the
solutions x1(t) and x2(t) of stochastic system (6.1). Right-hand panels show the frequency
histograms of x1(t) and x2(t) of stochastic system (6.1).
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Then, Assumption 4.1 and the conditions of weak persistent are satisfied. Figure 3(a),(c) represent
the solution of x1(t), x2(t), and Figure 3(b),(d) represent the histogram of the solution of x1(t), x2(t).
According Theorem 4.1, model (6.1) has a stationary distribution η(·).

As can be seen from Figure 3(a),(c), the values of population x1(t) are mostly between 1.5–3, and
the values of population x2(t) of are mostly between 1.3–2.5, mainly concentrated in the middle region.
Figure 3(b),(d) is the frequency histogram of populations x1(t), x2(t), shows a trend that high in the
middle and low at both ends, and obeys normal distribution approximately. This indicates that if

Assumption 4.1 and r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1 + γi(z))v(dz)ds > 0, i = 1, 2, hold, the populations will

continue to grow steadily over time, the population size will not change dramatically, and the different
populations of the system will coexist harmoniously.

Example 6.4. Letting v(Z) = 1, taking the initial value of model (6.1) as x1(0) = 0.1, x2(0) = 0.1, r1(0) =
0.2, r2(0) = 0.1, choosing the combinationA4 as the parameter values of model (6.1), and using the R
language for numerical simulation, Figure 4 is obtained.

According to the selected parameters, matrix A is
(

0 0.16
0.12 0

)
, matrix S is

(
0.4 0
0 0.5

)
, and taking

C = I ∈ R2×2, then

λ+max

(
1
2

(CA + ATC) −CS
)
≈ −0.3 ≤ 0.

Futher,

max
1≤i≤n

r̄i +max
1≤i≤n

{
aii(θi − 1)θ

θi
θi−1

i

}
+ lim sup

t→∞

1
t

∫ t

0

∫
Z

ln(1 + γ̌(z))v(dz)ds ≈ −0.007 < 0,

and then Assumption 5.1 is satisfied. According to Theorem 5.1, the stochastic Gilpin-Ayala population
model (6.1) is extinct.

According Remark 5.2, when max
1≤i≤n

r̄i + max
1≤i≤n

{
aii(θi − 1)θ

−
θi
θi−1

i

}
< 0, the populations x1(t), x2(t) are

extinct when the populations disturbed only by the OU process. The red lines in Figure 4(a),(b) show
the populations x1(t), x2(t) whose growth rate is disturbed by the OU process. When populations are
disturbed only by the OU process, populations x1(t), x2(t) are extinct at t = 20. The green lines in Figure
4(a),(b) represent the global solution of the population under the disturbance of the OU process and
Lévy noise, population x1(t) is extinct at t = 30 and population x2(t) is extinct at t = 45. In this example,
we let γ1(z) = 0.1, γ2(z) = 0.2, and according Remark 5.3, this indicates that when the Lévy noise
value is greater than 0, the population growth is promoted, and the positive Lévy noise will delay the
extinction of the population.
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Figure 4. Extinction of stochastic system (6.1) with γ1(z) = 0.1, γ2(z) = 0.2. Populations
x1(t) and x2(t) are extinct in the two cases. The relevant parameters are determined by the
combinationA4.

7. Conclusions

In this paper, we study the dynamic behaviors of a stochastic Gilpin-Ayala mutualism model (1.5)
driven by the mean-reverting OU process with Lévy jumps. The existence and uniqueness of the global
solution, the moment boundedness of the solution, the existence of the stationary distribution and
extinction of the stochastic Gilpin-Ayala mutualism model (1.5) are proved and verified by numerical
examples. The existence and uniqueness of the global solution and the moment boundedness of
the solution show that, the population shows a fluctuating growth trend under the interference of
various random factors, and for any q > 0, populations xi(t) (i = 1, 2, · · · , n) have bounded q-th
moments. The existence of the stationary distribution and extinction of the solution show that when

r̄i + lim sup
t→∞

1
t

∫ t

0

∫
Z

ln(1+ γi(z))v(dz)ds > 0, i = 1, 2, · · · , n, model (1.5) has a stationary distribution η(·),

which indicates the persistence of population growth, and the populations x(t) will be extinct when the
conditions given by the assumption are satisfied.

However, in model (1.5), only the influence of the OU process and Lévy jumps on the survival of the
population were considered. But, in the real world, there are many environmental factors that affect the
population, such as rainfall, drought, seasonal changes, etc..These are the questions we will be working
on in the future.
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