Research article

A natural 4th-order generalization of the geodesic problem

  • Received: 29 February 2024 Revised: 01 May 2024 Accepted: 16 May 2024 Published: 27 May 2024
  • 53C22, 58E10, 70H50

  • We propose a fourth-order extension of the geodesic problem arising in the continuity of the study of Riemannian cubics. We consider the variational problem in a Riemannian manifold and derive the Euler-Lagrange equation. For the special situation of Lie groups, we use Euler-Poincaré reduction to obtain the reduced equation on the Lie algebra.

    Citation: Margarida Camarinha. A natural 4th-order generalization of the geodesic problem[J]. Electronic Research Archive, 2024, 32(5): 3396-3412. doi: 10.3934/era.2024157

    Related Papers:

  • We propose a fourth-order extension of the geodesic problem arising in the continuity of the study of Riemannian cubics. We consider the variational problem in a Riemannian manifold and derive the Euler-Lagrange equation. For the special situation of Lie groups, we use Euler-Poincaré reduction to obtain the reduced equation on the Lie algebra.



    加载中


    [1] L. Noakes, G. Heinzinger, B. Paden, Cubic splines on curved spaces, IMA J. Math. Control Inf., 6 (1989), 465–473. https://doi.org/10.1093/imamci/6.4.465 doi: 10.1093/imamci/6.4.465
    [2] R. Caddeo, S. Montaldo, C. Oniciuc, P. Piu, The Euler-Lagrange method for biharmonic curves, Mediterr. J. Math., 3 (2006), 449–465. https://doi.org/10.1007/s00009-006-0090-x doi: 10.1007/s00009-006-0090-x
    [3] L. Machado, F. S. Leite, K. Krakowski, Higher-order smoothing splines versus least squares problems on Riemannian manifolds, J. Dyn. Control Syst., 16 (2010), 121–148. https://doi.org/10.1007/s10883-010-9080-1 doi: 10.1007/s10883-010-9080-1
    [4] K. Hüper, F. S. Leite, On the geometry of rolling and interpolation curves on $S^n$, $\mathrm{SO}_n$, and Grassmann manifolds, J. Dyn. Control Syst., 13 (2007), 467–502. https://doi.org/10.1007/s10883-007-9027-3 doi: 10.1007/s10883-007-9027-3
    [5] E. Batzies, K. Hüper, L. Machado, F. S. Leite, Geometric mean and geodesic regression on Grassmannians, Linear Algebra Appl., 466 (2015), 83–101. https://doi.org/10.1016/j.laa.2014.10.003 doi: 10.1016/j.laa.2014.10.003
    [6] P. Crouch, F. S. Leite, The dynamic interpolation problem on Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst., 1 (1995), 177–202. https://doi.org/10.1007/BF02254638 doi: 10.1007/BF02254638
    [7] L. Abrunheiro, M. Camarinha, J. Clemente-Gallardo, Cubic polynomials on Lie groups: Reduction of the Hamiltonian system, J. Phys. A: Math. Theor., 44 (2011), 355203. https://doi.org/10.1088/1751-8113/44/35/355203 doi: 10.1088/1751-8113/44/35/355203
    [8] L. Abrunheiro, M. Camarinha, Optimal control of affine connection control systems from the point of view of Lie algebroids, Int. J. Geom. Methods Mod. Phys., 11 (2014), 1450038. https://doi.org/10.1142/S0219887814500388 doi: 10.1142/S0219887814500388
    [9] C. Altafini, Reduction by group symmetry of second order variational problems on a semidirect product of Lie groups with positive definite Riemannian metric, ESAIM Control Optim. Calc. Var., 10 (2004), 526–548. https://doi.org/10.1051/cocv:2004018 doi: 10.1051/cocv:2004018
    [10] P. Balseiro, T. J. Stuchi, A. Cabrera, J. Koiller, About simple variational splines from the Hamiltonian viewpoint, J. Geom. Mech., 9 (2017), 257–290. https://doi.org/10.3934/jgm.2017011 doi: 10.3934/jgm.2017011
    [11] M. Barbero-Liñán, M. C. Muñoz-Lecanda, Optimal control problems for affine connection control systems: Characterization of extremals, in A: AIP Conference Proceedings. Geometry and physics: XVI International Fall Workshop, American Institute of Physics, 1023 (2008), 127–131. https://doi.org/10.1063/1.2958162
    [12] P. Crouch, F. S. Leite, M. Camarinha, Hamiltonian structure of generalized cubic polynomials, in Proceedings IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Princeton University, USA, 33 (2000), 13–18. https://doi.org/10.1016/S1474-6670(17)35541-6
    [13] A. Bloch, L. Colombo, R. Gupta, D. M. de Diego, A geometric approach to the optimal control of nonholonomic mechanical systems, in Analysis and Geometry in Control Theory and its Applications (eds. P. Bettiol, P. Cannarsa, G. Colombo, M. Motta and F. Rampazzo), Springer, 11 (2015), 35–64. https://doi.org/10.1007/978-3-319-06917-3_2
    [14] I. I. Hussein, A. M. Bloch, Dynamic coverage optimal control for multiple spacecraft interferometric imaging, J. Dyn. Control Syst., 13 (2007), 69–93. https://doi.org/10.1007/s10883-006-9004-2 doi: 10.1007/s10883-006-9004-2
    [15] A. Bloch, M. Camarinha, L. J. Colombo, Variational point-obstacle avoidance on Riemannian manifolds, Math. Control Signals Syst., 33 (2021), 109–121. https://doi.org/10.1007/s00498-021-00276-0 doi: 10.1007/s00498-021-00276-0
    [16] J. Goodman, L. Colombo, Collision avoidance of multiagent systems on Riemannian manifolds, SIAM J. Control Optim., 60 (2022), 168–188. https://doi.org/10.1137/21M1411056 doi: 10.1137/21M1411056
    [17] E. Stratoglou, A. A. Simoes, L. J. Colombo, Reduction in optimal control with broken symmetry for collision and obstacle avoidance of multi-agent system on Lie groups, Commun. Anal. Mech., 15 (2023), 1–23. http://doi.org/10.3934/cam.2023001 doi: 10.3934/cam.2023001
    [18] M. Camarinha, P. Crouch, F. S. Leite, Splines of class $C^k$ on non-euclidean spaces, IMA J. Math. Control Inf., 12 (1995), 399–410. https://doi.org/10.1093/imamci/12.4.399 doi: 10.1093/imamci/12.4.399
    [19] M. Camarinha, F. S. Leite, P. Crouch, Geometrical polynomials of odd degree in Riemannian manifolds, in 1997 European Control Conference (ECC), Brussels, Belgium, (1997), 1872–1878. https://doi.org/10.23919/ECC.1997.7082377
    [20] M. Camarinha, F. S. Leite, P. Crouch, High-order splines on Riemannian manifolds, Proc. Steklov Inst. Math., 321 (2023), 158–178. https://doi.org/10.1134/S0081543823020128 doi: 10.1134/S0081543823020128
    [21] V. Branding, A structure theorem for polyharmonic maps between Riemannian manifolds, J. Differ. Equations, 273 (2021), 14–39. https://doi.org/10.1016/j.jde.2020.11.046 doi: 10.1016/j.jde.2020.11.046
    [22] M. Camarinha, Luís Machado, F. S. Leite, k-Splines on SPD manifolds, in International Conference on Geometric Science of Information, Springer Nature Switzerland, 14072 (2023), 624–633. https://doi.org/10.1007/978-3-031-38299-4_64
    [23] J. Hinkle, P. T. Fletcher, S. Joshi, Intrinsic polynomials for regression on Riemannian manifolds, J. Math. Imaging Vision, 50 (2014), 32–52. https://doi.org/10.1007/s10851-013-0489-5 doi: 10.1007/s10851-013-0489-5
    [24] C. Samir, P. A. Absil, A. Srivastava, E. Klassen, A gradient-descent method for curve fitting on Riemannian manifolds, Found. Comput. Math., 12 (2012), 49–73. https://doi.org/10.1007/s10208-011-9091-7 doi: 10.1007/s10208-011-9091-7
    [25] M. Camarinha, A 4th-Order Variational Problem on SO(3), in APCA International Conference on Automatic Control and Soft Computing, Caparica, Portugal, 930 (2022), 353–362. https://doi:10.1007/978-3-031-10047-5_31
    [26] F. Gay-Balmaz, D. D. Holm, T. S. Ratiu, Higher-order Lagrange-Poincaré and Hamilton-Poincaré reductions, Bull. Braz. Math. Soc. New Ser., 42 (2011), 579–606. https://doi.org/10.1007/s00574-011-0030-7 doi: 10.1007/s00574-011-0030-7
    [27] J. Milnor, Morse Theory, Princeton University, 1969.
    [28] L. M. Lee, Riemannian Manifolds: An Introduction to Curvature, Springer-Verlag, New York, 1997.
    [29] B. O'Neill, Semi-Riemannian Geometry: With Applications to Relativity, Academic Press, New York, 1983.
    [30] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience Publishers, New York, 1963.
    [31] L. Noakes, T. Popiel, Quadratures and cubics in SO(3) and SO(1, 2), IMA J. Math. Control Inf., 23 (2006), 463–473. https://doi.org/10.1093/imamci/dni069 doi: 10.1093/imamci/dni069
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(407) PDF downloads(36) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog