Research article

Event-triggered sliding mode control for a class of uncertain switching systems

  • Received: 14 August 2023 Revised: 22 October 2023 Accepted: 26 October 2023 Published: 30 October 2023
  • MSC : 93B12, 93C10, 93C55, 93D23

  • We discuss the problem of event-triggered sliding mode control for a class of uncertain switched systems. First, through the pre-designed sliding mode surface, the corresponding sliding mode dynamics of the switched system are obtained. Second, based on the Lyapunov function technique and average dwell time strategy, the exponential stability of the correlated sliding mode dynamics is analyzed. Then, a sliding mode control law is designed by using the event-triggered mechanism, which can drive the state trajectories of the uncertain switched system to the bounded sliding mode region and maintain it there for subsequent time. Finally, a simulation example is given to verify the effectiveness of the proposed method.

    Citation: Jiaojiao Li, Yingying Wang, Jianyu Zhang. Event-triggered sliding mode control for a class of uncertain switching systems[J]. AIMS Mathematics, 2023, 8(12): 29424-29439. doi: 10.3934/math.20231506

    Related Papers:

  • We discuss the problem of event-triggered sliding mode control for a class of uncertain switched systems. First, through the pre-designed sliding mode surface, the corresponding sliding mode dynamics of the switched system are obtained. Second, based on the Lyapunov function technique and average dwell time strategy, the exponential stability of the correlated sliding mode dynamics is analyzed. Then, a sliding mode control law is designed by using the event-triggered mechanism, which can drive the state trajectories of the uncertain switched system to the bounded sliding mode region and maintain it there for subsequent time. Finally, a simulation example is given to verify the effectiveness of the proposed method.



    加载中


    [1] X. Zhao, P. Shi, X. Zheng, L. Zhang, Adaptive tracking control for switched stochastic nonlinear systems with unknown actuator dead-zone, Automatica, 60 (2015), 193–200. https://doi.org/10.1016/j.automatica.2015.07.022 doi: 10.1016/j.automatica.2015.07.022
    [2] W. A. Zhang, L. Yu, Stability analysis for discrete-time switched time-delay systems, Automatica, 45 (2009), 2265–2271. https://doi.org/10.1016/j.automatica.2009.05.027 doi: 10.1016/j.automatica.2009.05.027
    [3] P. Shi, X. Su, F. Li, Dissipativity-based filtering for fuzzy switched systems with stochastic perturbation, IEEE Trans. Autom. Control, 61 (2016), 1694–1699. https://doi.org/10.1109/TAC.2015.2477976 doi: 10.1109/TAC.2015.2477976
    [4] J. Lian, C. Li, B. Xia, Sampled-data control of switched linear systems with application to an F-18 aircraft, IEEE Trans. Ind. Electron., 64 (2017), 1332–1340. https://doi.org/10.1109/TIE.2016.2618872 doi: 10.1109/TIE.2016.2618872
    [5] Z. Fei, S. Shi, Z. Wang, L. Wu, Quasi-time-dependent output control for discrete-time switched system with mode-dependent average dwell time, IEEE Trans. Autom. Control, 63 (2018), 2647–2653. https://doi.org/10.1109/TAC.2017.2771373 doi: 10.1109/TAC.2017.2771373
    [6] H. Gao, Z. Li, X. Yu, J. Qiu, Hierarchical multiobjective heuristic for PCB assembly optimization in a beam-head surface mounter, IEEE Trans. Cybern., 52 (2022), 6911–6924. https://doi.org/10.1109/TCYB.2020.3040788 doi: 10.1109/TCYB.2020.3040788
    [7] Z. Liu, W. Lin, X. Yu, J. J. Rodríguez-Andina, H. Gao, Approximation-free robust synchronization control for dual-linear-motors-driven systems with uncertainties and disturbances, IEEE Trans. Ind. Electron., 69 (2022), 10500–10509. https://doi.org/10.1109/TIE.2021.3137619 doi: 10.1109/TIE.2021.3137619
    [8] X. Zhang, Robust integral sliding mode control for uncertain switched systems under arbitrary switched rules, Nonlinear Anal., 69 (2022), 100900. https://doi.org/10.1016/j.nahs.2020.100900 doi: 10.1016/j.nahs.2020.100900
    [9] Z. Fei, C. Guan, X. Zhao, Event-triggered dynamic output feedback control for switched systems with frequent asynchronism, IEEE Trans. Autom. Control, 65 (2020), 3120–3127. https://doi.org/10.1109/TAC.2019.2945279 doi: 10.1109/TAC.2019.2945279
    [10] P. Shi, H. Wang, C. C. Lim, Network-based event-triggered control for singular systems with quantizations, IEEE Trans. Ind. Electron., 63 (2016), 1230–1238. https://doi.org/10.1109/TIE.2015.2475515 doi: 10.1109/TIE.2015.2475515
    [11] P. Tallapragada, N. Chopra, On event triggered tracking for nonlinear systems, IEEE Trans. Autom. Control, 58 (2013), 2343–2348. https://doi.org/10.1109/TAC.2013.2251794 doi: 10.1109/TAC.2013.2251794
    [12] H. Caballero-Barragán, L. P. Osuna-Ibarra, A. G. Loukianov, F. Plestan, Sliding mode predictive control of linear uncertain systems with delays, Automatica, 94 (2018), 409–415. https://doi.org/10.1016/j.automatica.2018.04.040 doi: 10.1016/j.automatica.2018.04.040
    [13] J. Liu, L. Wu, C. Wu, W. Luo, L. G. Franquelo, Event-triggering dissipative control of switched stochastic systems via sliding mode, Automatica, 103 (2019), 261–273. https://doi.org/10.1016/j.automatica.2019.01.029 doi: 10.1016/j.automatica.2019.01.029
    [14] Z. Shi, Y. Zhang, Sliding mode control of T-S fuzzy descriptor systems with time-delay, 2018 Chinese Control and Decision Conference, 2018. https://doi.org/10.1109/CCDC.2018.8407107 doi: 10.1109/CCDC.2018.8407107
    [15] Z. Cao, Y. Niu, Finite-time stochastic boundedness of Markovian jump systems: a sliding-mode-based hybrid design method, Nonlinear Anal., 36 (2020), 100862. https://doi.org/10.1016/j.nahs.2020.100862 doi: 10.1016/j.nahs.2020.100862
    [16] F. Li, C. Du, C. Yang, L. Wu, W. Gui, Finite-time asynchronous sliding mode control for Markovian jump systems, Automatica, 109 (2019), 108503. https://doi.org/10.1016/j.automatica.2019.108503 doi: 10.1016/j.automatica.2019.108503
    [17] L. Wu, Y. Gao, J. Liu, H. Li, Event-triggered sliding mode control of stochastic systems via output feedback, Automatica, 82 (2017), 79–92. https://doi.org/10.1016/j.automatica.2017.04.032 doi: 10.1016/j.automatica.2017.04.032
    [18] H. Zhao, Y. Niu, Finite-time sliding mode control of switched systems with one-sided Lipschitz nonlinearity, J. Franklin Inst., 357 (2020), 11171–11188. https://doi.org/10.1016/j.jfranklin.2019.05.019 doi: 10.1016/j.jfranklin.2019.05.019
    [19] S. Liu, L. Zhang, B. Niu, X. Zhao, A. M. Ahmad, Adaptive neural finite-time hierarchical sliding mode control of uncertain under-actuated switched nonlinear systems with backlash-like hysteresis, Inf. Sci., 599 (2022), 147–169. https://doi.org/10.1016/j.ins.2022.03.077 doi: 10.1016/j.ins.2022.03.077
    [20] L. Wu, D. W. C. Ho, C. W. Li, Sliding mode control of switched hybrid systems with stochastic perturbation, Syst. Control Lett., 60 (2011), 531–539. https://doi.org/10.1016/j.sysconle.2011.04.007 doi: 10.1016/j.sysconle.2011.04.007
    [21] A. Tanwani, C. Prieur, M. Fiacchini, Observer-based feedback stabilization of linear systems with event-triggered sampling and dynamic quantization, Syst. Control Lett., 94 (2016), 46–56. https://doi.org/10.1016/j.sysconle.2016.05.008 doi: 10.1016/j.sysconle.2016.05.008
    [22] H. Yu, F. Hao, X. Chen, On event-triggered control for integral input-to-state stable systems, Syst. Control Lett., 123 (2019), 24–32. https://doi.org/10.1016/j.sysconle.2018.10.013 doi: 10.1016/j.sysconle.2018.10.013
    [23] T. F. Li, J. Fu, Event-triggered control of switched linear systems, J. Franklin Inst., 354 (2017), 6451–6462. https://doi.org/10.1016/j.jfranklin.2017.05.018 doi: 10.1016/j.jfranklin.2017.05.018
    [24] Y. Wang, L. Xiao, Y. Guo, Finite-time stability of singular switched systems with a time-varying delay based on an event-triggered mechanism, AIMS Math., 8 (2023), 1901–1924. https://doi.org/10.3934/math.2023098 doi: 10.3934/math.2023098
    [25] Y. Cheng, Y. Li, A novel event-triggered constrained control for nonlinear discrete-time systems, AIMS Math., 8 (2023), 20530–20545. https://doi.org/10.3934/math.20231046 doi: 10.3934/math.20231046
    [26] L. Long, F. Wang, Dynamic event-triggered adaptive NN control for switched uncertain nonlinear systems, IEEE Trans. Cybern., 53 (2023), 988–999. https://doi.org/10.1109/TCYB.2021.3088636 doi: 10.1109/TCYB.2021.3088636
    [27] A. Liu, T. Li, Y. Gu, Event-triggered extended state observer based distributed control of nonlinear vehicle platoons, Syst. Control Lett., 178 (2023), 105583. https://doi.org/10.1016/j.sysconle.2023.105583 doi: 10.1016/j.sysconle.2023.105583
    [28] J. Qiu, M. Ma, T. Wang, Event-triggered adaptive fuzzy fault-tolerant control for stochastic nonlinear systems via command filtering, IEEE Trans. Syst. Man Cybern., 52 (2022), 1145–1155. https://doi.org/10.1109/TSMC.2020.3013744 doi: 10.1109/TSMC.2020.3013744
    [29] S. Luo, F. Deng, On event-triggered control of nonlinear stochastic systems, IEEE Trans. Autom. Control, 65 (2020), 369–375. https://doi.org/10.1109/TAC.2019.2916285 doi: 10.1109/TAC.2019.2916285
    [30] S. Sui, C. L. P. Chen, S. Tong, Event-trigger-based finite-time fuzzy adaptive control for stochastic nonlinear system with unmodeled dynamics, IEEE Trans. Fuzzy Syst., 29 (2021), 1914–1926. https://doi.org/10.1109/TFUZZ.2020.2988849 doi: 10.1109/TFUZZ.2020.2988849
    [31] S. Wen, T. Huang, X. Yu, M. Z. Q. Chen, Z. Zeng, Aperiodic sampled-data sliding-mode control of fuzzy systems with communication delays via the event-triggered method, IEEE Trans. Fuzzy Syst., 24 (2016), 1048–1057. https://doi.org/10.1109/TFUZZ.2015.2501412 doi: 10.1109/TFUZZ.2015.2501412
    [32] Y. Yang, J. Wu, W. Zheng, Attitude control for a station keeping airship using feedback linearization and fuzzy sliding mode control, Int. J. Innovative Comput. Inf. Control, 8 (2012), 8299–8310.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1133) PDF downloads(66) Cited by(1)

Article outline

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog