Research article

Master-slave synchronization for uncertain Markov jump neural networks with time-delay based on the sliding mode control

  • Received: 07 August 2023 Revised: 29 August 2023 Accepted: 12 September 2023 Published: 27 November 2023
  • MSC : 34D20

  • This paper investigated the master-slave synchronization for uncertain neural networks with time-delay by using the sliding mode control method. The uncertain parts in this neural network only needs to be bounded other than any structure condition. An integral sliding mode surface and sliding mode controller were designed such that the state trajectories of the neural networks could reach the sliding mode surface in finite time. Moreover, the computing method of the controller gain was proposed. Finally, a numerical example was provided to show the effectiveness of the obtained results.

    Citation: Wenjie You, Tianbo Wang. Master-slave synchronization for uncertain Markov jump neural networks with time-delay based on the sliding mode control[J]. AIMS Mathematics, 2024, 9(1): 257-269. doi: 10.3934/math.2024015

    Related Papers:

  • This paper investigated the master-slave synchronization for uncertain neural networks with time-delay by using the sliding mode control method. The uncertain parts in this neural network only needs to be bounded other than any structure condition. An integral sliding mode surface and sliding mode controller were designed such that the state trajectories of the neural networks could reach the sliding mode surface in finite time. Moreover, the computing method of the controller gain was proposed. Finally, a numerical example was provided to show the effectiveness of the obtained results.



    加载中


    [1] F. F. Du, J. G. Lu, Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks, Fuzzy Set. Syst., 466 (2023), 108480. https://doi.org/10.1016/j.fss.2023.02.001 doi: 10.1016/j.fss.2023.02.001
    [2] Z. Y. Dong, X. Wang, X. Zhang, A nonsingular M-matrix-based global exponential stability analysis of higher-order delayed discrete-time Cohen–Grossberg neural networks, Appl. Math. Comput., 385 (2020), 125401. https://doi.org/10.1016/j.amc.2020.125401 doi: 10.1016/j.amc.2020.125401
    [3] Z. Y. Dong, X. Wang, X. Zhang, M. J. Hu, T. N. Dinh, Global exponential synchronization of discrete-time high-order switched neural networks and its application to multi-channel audio encryption, Nonlinear Anal.-Hybri., 47 (2023), 101291. https://doi.org/10.1016/j.nahs.2022.101291 doi: 10.1016/j.nahs.2022.101291
    [4] Y. Y. Chen, D. Zhang, H. Zhang, Q. G. Wang, Dual-path mixed-domain residual threshold networks for bearing fault diagnosis, IEEE T. Ind. Electron., 69 (2022), 13462–13472. https://doi.org/10.1109/TIE.2022.3144572 doi: 10.1109/TIE.2022.3144572
    [5] Y. Y. Chen, D. Zhang, R. Q. Yan, Domain adaptation networks with parameter-free adaptively rectified linear units for fault diagnosis under variable operating conditions, IEEE T. Neur. Net. Lear., 2023, 1–14. https://doi.org/10.1109/TNNLS.2023.3298648 doi: 10.1109/TNNLS.2023.3298648
    [6] X. Wang, J. D. Cao, X. H. Zhou, Y. Liu, Y. X. Yan, J. T. Wang, A novel framework of prescribed time/fixed time/finite time stochastic synchronization control of neural networks and its application in image encryption, Neural Networks, 165 (2023), 755–773. https://doi.org/10.1016/j.neunet.2023.06.023 doi: 10.1016/j.neunet.2023.06.023
    [7] G. Rajchakit, R. Saravanakumar, C. K. Ahn, H. R. Karimi, Improved exponential convergence result for generalized neural networks including interval time-varying delayed signals, Neural Networks, 86 (2017), 10–17. https://doi.org/10.1016/j.neunet.2016.10.009 doi: 10.1016/j.neunet.2016.10.009
    [8] L. M. Ding, Y. He, Y. W. Liao, M. Wu, New result for generalized neural networks with additive time-varying delays using free-matrix-based integral inequality method, Neurocomputing, 238 (2017), 205–211. https://doi.org/10.1016/j.neucom.2017.01.056 doi: 10.1016/j.neucom.2017.01.056
    [9] W. J. Lin, Y. He, C. K. Zhang, M. Wu, M. D. Ji, Stability analysis of recurrent neural networks with interval time-varying delay via free-matrix-based integral inequality, Neurocomputing, 205 (2016), 490–497. https://doi.org/10.1016/j.neucom.2016.04.052 doi: 10.1016/j.neucom.2016.04.052
    [10] L. G. Wu, X. M. Yao, W. X. Zheng, Generalized $H_2$ fault detection for two-dimensional Markovian jump systems, Automatica, 48 (2012), 1741–1750. https://doi.org/10.1016/j.automatica.2012.05.024 doi: 10.1016/j.automatica.2012.05.024
    [11] H. Y. Li, P. Shi, D. Y. Yao, L. G. Wu, Observer-based adaptive sliding mode control for nonlinear Markovian jump systems, Automatica, 64 (2016), 133–142. https://doi.org/10.1016/j.automatica.2015.11.007 doi: 10.1016/j.automatica.2015.11.007
    [12] Y. Y. Zhou, G. Chen, Non-fragile $H_\infty$ finite-time sliding mode control for stochastic Markovian jump systems with time delay, Appl. Math. Comput., 409 (2021), 126383. https://doi.org/10.1016/j.amc.2021.126383 doi: 10.1016/j.amc.2021.126383
    [13] F. Li, S. Y. Xu, H. Shen, Q. Ma, Passivity-based control for hidden Markov jump systems with singular perturbations and partially unknown probabilities, IEEE T. Automat. Contr., 65 (2020), 3701–3706. https://doi.org/10.1109/TAC.2019.2953461 doi: 10.1109/TAC.2019.2953461
    [14] F. Li, W. X. Zheng, S. Y. Xu, Stabilization of discrete-time hidden semi-Markov jump singularly perturbed systems with partially known emission probabilities, IEEE T. Automat. Contr., 67 (2022), 4234–4240. https://doi.org/10.1109/TAC.2021.3113471 doi: 10.1109/TAC.2021.3113471
    [15] J. M. Zhu, X. H. Yu, T. P. Zhang, Z. Q. Cao, Y. Q. Yang, Y. Yi, Sliding mode control of MIMO Markovian jump systems, Automatica, 68 (2016), 286–293. https://doi.org/10.1016/j.automatica.2016.01.070 doi: 10.1016/j.automatica.2016.01.070
    [16] L. F. Ma, Z. D. Wang, Q. L. Han, Y. R. Liu, Dissipative control for nonlinear Markovian jump systems with actuator failures and mixed time-delays, Automatica, 98 (2018), 358–362. https://doi.org/10.1016/j.automatica.2018.09.028 doi: 10.1016/j.automatica.2018.09.028
    [17] H. T. Wang, J. Wang, X. Y. Chen, K. B. Shi, H. Shen, Adaptive sliding mode control for persistent dwell-time switched nonlinear systems with matched/mismatched uncertainties and its application, J. Franklin I., 359 (2022), 967–980. https://doi.org/10.1016/j.jfranklin.2021.12.008 doi: 10.1016/j.jfranklin.2021.12.008
    [18] Y. S. Zhao, X. D. Li, P. Y. Duan, Observer-based sliding mode control for synchronization of delayed chaotic neural networks with unknown disturbance, Neural Networks, 117 (2019), 268–273. https://doi.org/10.1016/j.neunet.2019.05.013 doi: 10.1016/j.neunet.2019.05.013
    [19] T. Y. Jing, F. Q. Chen, X. H. Zhang, Finite-time lag synchronization of time-varying delayed complex networks via periodically intermittent control and sliding mode control, Neurocomputing, 199 (2016), 178–184. https://doi.org/10.1016/j.neucom.2016.03.018 doi: 10.1016/j.neucom.2016.03.018
    [20] X. G. Zhang, L. Z. Sun, K. Zhao, L. Sun, Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques, IEEE T. Power. Electr., 28 (2013), 1358–1365. https://doi.org/10.1109/TPEL.2012.2206610 doi: 10.1109/TPEL.2012.2206610
    [21] Y. Y. Wang, Y. B. Gao, H. R. Karimi, H. Shen, Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit, IEEE T. Syst. Man. Cy.-S., 48 (2018), 1667–1675. https://doi.org/10.1109/TSMC.2017.2720968 doi: 10.1109/TSMC.2017.2720968
    [22] K. J. Lin, Adaptive sliding mode control design for a class of uncertain singularly perturbed nonlinear systems, Int. J. Control, 87 (2014), 432–439. https://doi.org/10.1080/00207179.2013.841325 doi: 10.1080/00207179.2013.841325
    [23] Y. Tang, H. Gao, J. Lu, J. Kurths, Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization method. IEEE T. Neur. Net. Lear., 25 (2014), 1804–1815. https://doi.org/10.1109/TNNLS.2013.2295966 doi: 10.1109/TNNLS.2013.2295966
    [24] P. Thevoz, J. D. Adams, H. T. Shea, H. Bruus, H. Soh, Acoustophoretic synchronization of mammalian cells in microchannels, Anal. Chem., 82 (2010), 3094–3098. https://doi.org/10.1021/ac100357u doi: 10.1021/ac100357u
    [25] H. Mkaouar, O. Boubaker, Chaos synchronization for master slave piecewise linear systems: application to Chua's circuit, Common. Nonlinear Sci., 17 (2012), 1292–1302. https://doi.org/10.1016/j.cnsns.2011.07.027 doi: 10.1016/j.cnsns.2011.07.027
    [26] C. Yin, S. M. Zhong, W. F. Chen, Design PD controller for master-slave synchronization of chaotic Lur'e systems with sector and slope restricted nonlinearities, Common. Nonlinear Sci., 16 (2011), 1632–1639. https://doi.org/10.1016/j.cnsns.2010.05.031 doi: 10.1016/j.cnsns.2010.05.031
    [27] X. Wang, X. Z. Liu, K. She, S. M. Zhong, Finite-time lag synchronization of master-slave complex dynamical networks with unknown signal propagation delays, J. Franklin I., 354 (2017), 4913–4929. https://doi.org/10.1016/j.jfranklin.2017.05.004 doi: 10.1016/j.jfranklin.2017.05.004
    [28] Q. K. Shen, T. P. Zhang, A novel adaptive synchronization control of a class of master–slave large-scale systems with unknown channel time-delay, Commun. Nonlinear. Sci., 22 (2015), 83–91. https://doi.org/10.1016/j.cnsns.2010.05.031 doi: 10.1016/j.cnsns.2010.05.031
    [29] X. M. Zhang, W. J. Lin, Q. L. Han, Y. He, M. Wu, Global Asymptotic Stability for Delayed Neural Networks Using an Integral Inequality Based on Nonorthogonal Polynomials, IEEE T. Neur. Net. Lear., 29 (2018), 4487–4493. https://doi.org/10.1109/TNNLS.2017.2750708 doi: 10.1109/TNNLS.2017.2750708
    [30] Y. R. Liu, Z. D. Wang, J. L. Liang, X. H. Liu, Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time delays, IEEE T. Neur. Net., 20 (2009), 1102–1116. https://doi.org/10.1109/TNN.2009.2016210 doi: 10.1109/TNN.2009.2016210
    [31] S. X. Sun, H. G. Zhang, W. H. Li, Y. C. Wang, Time-varying delay-dependent finite-time boundedness with H$_\infty$ performance for Markovian jump neural networks with state and input constraints, Neurocomputing, 423 (2021), 419–426. https://doi.org/10.1016/j.neucom.2020.10.088 doi: 10.1016/j.neucom.2020.10.088
    [32] J. K. Tian, W. J. Xiong, F. Xu, Improved delay-partitioning method to stability analysis for neural networks with discrete and distributed time-varying delays, Appl. Math. Comput., 233 (2014), 152–164. https://doi.org/10.1016/j.amc.2014.01.129 doi: 10.1016/j.amc.2014.01.129
    [33] Y. Q. Zhang, C. X. Liu, X. W. Mu, Robust finite-time H$_\infty$ control problem for singular stochastic systems via static output feedback, Appl. Math. Comput., 218 (2012), 5629–5640. https://doi.org/10.1016/j.amc.2014.01.129 doi: 10.1016/j.amc.2014.01.129
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(934) PDF downloads(85) Cited by(2)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog