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Abstract: This paper investigated the master-slave synchronization for uncertain neural networks
with time-delay by using the sliding mode control method. The uncertain parts in this neural network
only needs to be bounded other than any structure condition. An integral sliding mode surface and
sliding mode controller were designed such that the state trajectories of the neural networks could
reach the sliding mode surface in finite time. Moreover, the computing method of the controller gain
was proposed. Finally, a numerical example was provided to show the effectiveness of the obtained
results.
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1. Introduction

Recently, neural networks such as the Hopfield neural network, cellular neural network,
Cohen-Grossberg neural network and bidirectional associative neural network have attracted much
attention due to their significant promise for many practical applications [1–6]. For example, in the
field of signal processing, based on the theoretical results of discrete-time high-order switched neural
networks synchronization, the encryption and decryption scheme of multi-channel audio signal design
has good security [3]. In the field of fault diagnosis, by using deep parameter-free
reconstruction-classification networks with parameter-free adaptively rectified linear units, the fault
characteristics of vibration signals under the same fault state under different operating conditions can
be better captured [5]. In the field of image processing, the theoretical results of random
synchronization control framework based on semi-Markov switching quaternion-valued neural
networks can be effectively applied to image encryption [6]. In particular, stability properties of the
neural networks play a significant role in their design for solving practical problems. There are some
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different factors to influence the stability of neural networks. In particular, time delay is often
unavoidable. Moreover, for the neural networks with time delay, there exists many techniques to
reduce the conservatism of stability conditions, such as the improved bounding technique [7],
free-weighting matrix theory [8], integral inequality technique [9] and so on.

It is well known that many dynamical systems may switch in different unpredictable modes, such
as random failures [10]. As an effective tool, the Markovian jump process can be used to model these
switching systems. Until now, there existed many literatures to investigate the stability, stabilization
and observation for Markovian jump systems. For example, the authors investigated the adaptive
sliding mode control problem of nonlinear Markovian jump systems with partly unknown transition
probabilities, and obtained some conditions to guarantee the stochastic stability of the closed-loop
system in [11]. The authors in [12] discussed the realization of H∞ finite-time control for a class
of uncertain stochastic time-delay systems with unmeasured states through sliding mode control, and
obtained some conditions to guarantee the system state was stabilized within a limited time interval. In
[13], the authors established some passivity analysis criteria for Markovian jump singularly perturbed
systems with partially unknown probabilities by using the hidden Markov model, and presented a
unified controller design method to ensure the passivity of the system. Much more literatures can be
found in [14–16].

In recent years, sliding mode control has become an effective robust control method because it is
insensitive to model uncertainties, parameter variations and external disturbances. So, the sliding mode
control has been used for lots of physical systems, such as robot manipulators, automotive engines and
power systems. There are some existing results for linear or nonlinear systems [17–22]. For example,
the authors in [17] investigated the adaptive sliding mode control issue for switched nonlinear systems
with matched and mismatched uncertainties, designed the switched adaptive sliding mode control law
and estimated the upper bound parameters of the matched uncertainty. The authors in [18] considered
the synchronization of delayed chaotic neural networks with unknown disturbance via the observer-
based sliding mode control, where the sliding surface involves an integral structure and a discontinuous
controller.

In addition, synchronization has received considerable attention from various research fields, such
as secure communication [3], engineering [23] and chemistry [24]. Synchronization phenomenons
can be observed in many real systems such as neural systems, lasers and electronic circuits [25–28].
For example, the authors in [25] dealt with chaos synchronization for master-slave piecewise linear
systems and provided some new sufficient conditions by using a Lyapunov approach and the so-called
S-procedure. In [26], the authors designed a proportional-derivative (PD) controller for the master-
slave synchronization of chaotic Lurie systems and presented a new synchronization criterion based
on Lyapunov functions with a quadratic form of states and nonlinear functions of the systems. In [27],
the authors studied the finite-time lag synchronization issue of master-slave complex networks with
unknown signal propagation delays by the linear and adaptive error state feedback approaches and
discovered that the setting time was related to initial values.

Motivated by the above discussion, we will consider the master-slave synchronization for uncertain
neural networks with time-delay by using the sliding mode control method. The main contributions
of our paper are as follows: (1) The master-slave synchronization for uncertain Markov jump neural
networks with time-delay is considered by using the sliding mode control method, (2) the effect of
time-delay and uncertainty for the neural networks stability are considered, and the uncertain parts
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in the neural networks only need be bounded other than any structure condition and (3) the provided
sliding mode controller is very general.

The rest of this letter is organized as follows. In Section 2, the considered neural network model
and some preliminaries are given. In Section 3, some sufficient conditions are proposed by the sliding
mode control. In Section 4, a numerical example is provided to illustrate the effectiveness of the
method proposed. In the last section, conclusions are presented.
Notation:
Rn: the n-dimensional Euclidean space; Rn×m: the set of all n × m real matrices; || · ||: the two-norm of
a vector; || · ||1: its one-norm; In: the n order unit matrix; λmin(H): the minimum eigenvalues of matrix
H; the notation X > Y , where X, Y are symmetric matrices, meaning that X − Y is a positive definite
symmetric matrix. For a given matrix A ∈ Rn×n, AT denotes its transpose. sign(·) is the sign function.
∗ in a symmetric matrix denotes the symmetric terms.

2. Problem description and preliminaries

Let (Ω,F ,Ft,P) be a probability space related to an increasing family {Ft}t≥0 of the σ-algebras
Ft ⊂ F , where Ω is the sample space. F is the σ-algebras of the sample space and P is the probability
measure defined on F .

Consider the uncertain time delay neural networks with the Markovian jump defined on the
probability space (Ω,F ,Ft,P) as follows:

M :


ẋm(t) = −A(r(t))xm(t) + [B(r(t)) + ∆B(r(t))] f (xm(t))

+[C(r(t)) + ∆C(r(t))]g(xm(t − d(t))) + J,
xm(t) = ϕ(t), t ∈ [−d, 0],

(2.1)

where xm(t) = (xm1(t), xm2(t), ..., xmn(t))T ∈ Rn is the state of neuron networks and A(r(t)) ∈ Rn×n and
B(r(t)) ∈ Rn×m and C(r(t)) ∈ Rn×m are coefficient matrices. ∆B(r(t)) and ∆C(r(t)) ∈ Rn×m denote the
system’s uncertain parts and satisfy[

∆B(r(t)) ∆C(r(t))
]

= M(r(t))W(t)
[

N1(r(t)) N2(r(t))
]
,

where matrixW(t) satisfiesWT (t)W(t) ≤ I, M(r(t)), N1(r(t)), N2(r(t)) are some known matrices with
appropriate dimensions. d(t) represents time delay and satisfies 0 ≤ d(t) ≤ d and ḋ(t) ≤ µ ≤ 1. f (xm(t))
and g(xm(t − d(t))) are the neuron activation functions, and J ∈ Rn is a constant vector. {r(t), t ≥ 0}
is a finite state Markov jumping process and represents the switching process among different modes,
which takes values in a state space L = {1, 2, ..., l}, and l is the number of modes. Let

∏
= [πi j]l×l

denote the transition rate matrix, where the mode transition probabilities are

Pr{r(t + ∆t) = j|r(t) = i} =

{
πi j∆t + o(∆t), i , j,
1 + πii∆t + o(∆t), i = j,

(2.2)

where ∆t > 0 and lim∆t→0
o(∆t)

∆t = 0, πi j satisfies πi j > 0 with i , j and πii = −
∑l

j=1, j,i πi j for each mode
i.

In order to be notional convenience, for the i-th mode, system (2.1) can be rewritten as{
ẋm(t) = −Aixm(t) + (Bi + ∆Bi) f (xm(t)) + (Ci + ∆Ci)g(xm(t − d(t))) + J,
xm(t) = ϕ(t), t ∈ [−d, 0].

(2.3)
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Let (2.3) be the master system, then the slave system is

S :
{

ẋs(t) = −A(r(t))xs(t) + B(r(t)) f (xs(t)) + C(r(t))g(xs(t − d(t))) + J + u(t),
xs(t) = ψ(t), t ∈ [−d, 0].

(2.4)

Definition 1. [29] Master system (2.3) and slave system (2.4) are said to be asymptotic synchronization
if

limt→∞||xm(t) − xs(t)|| = 0

for any initial conditions.
In this paper, our objective is to design a suit controller u(t) such that the master system (2.3) and

slave system (2.4) are in synchronization by using the sliding mode control method.
To the end, writing the state error e(t) = xs(t) − xm(t), and the corresponding state error system can

be described by{
ė(t) = −Aie(t) + BiF(e(t)) + CiG(e(t − d(t))) − ∆Bi f (xm(t)) − ∆Cig(xm(t − d(t))) + u(t),
e(t) = ψ(t) − ϕ(t), t ∈ [−d, 0],

(2.5)

where F(e(t)) = f (xs(t)) − f (xm(t)) and G(e(t − d(t))) = g(xs(t − d(t))) − g(xm(t − d(t))).
First, we take the sliding mode surface as

σi(t) = e(t) +

∫ t

0
[(Ai + Ki)e(θ) − BiF(e(θ)) −CiG(e(θ − d(θ)))]dθ. (2.6)

Thus, the derivative of σi(t) is

σ̇i(t) = ė(t) + (Ai + Ki)e(t) − BiF(e(t)) −CiG(e(t − d(t)))
= Kie(t) − ∆Bi f (xm(t)) − ∆Cig(xm(t − d(t))) + u(t),

(2.7)

where Ki(1 ≤ i ≤ l) are some unknown matrices to be determined later. When the state trajectories
reach the sliding mode surface, then σ̇i(t) = 0 and σi(t) = 0. So, we obtain the equivalent controller

ueq(t) = −Kie(t) + ∆Bi f (xm(t)) + ∆Cig(xm(t − d(t))). (2.8)

Substituting (2.8) into (2.5), we have{
ė(t) = −(Ai + Ki)e(t) + BiF(e(t)) + CiG(e(t − d(t))),
e(t) = ψ(t) − ϕ(t), t ∈ [−d, 0].

(2.9)

In this paper, the following assumptions for the neuron activation functions are needed.
Assumption 1. [30] Assume that each component of the nonlinear function f (·) and g(·) are continuous
and bounded and satisfy

η−k ≤
fk(z1) − fk(z2)

z1 − z2
≤ η+

k ,

θ−k ≤
gk(z1) − gk(z2)

z1 − z2
≤ θ+

k , ∀k = 1, 2, ..., n,

for any z1, z2 ∈ R, where η−k > 0, η+
k > 0, θ−k > 0, θ+

k > 0 are some known positive constants.
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From Assumption 1, it is easy to get the following inequalities

[
eT (t) FT (e(t))

] [ Θ1H Θ2H
∗ H

] [
e(t)

F(e(t))

]
≤ 0 (2.10)

and [
eT (t) GT (e(t − d(t)))

] [ Θ3H Θ4H
∗ H

] [
e(t)

G(e(t − d(t)))

]
≤ 0, (2.11)

where H = diag{h1, h2, ..., hn} is a positive definite diagonal matrix,

Θ1 = diag{η−1η
+
1 , η

−
2η

+
2 , ..., η

−
nη

+
n },Θ2 = diag{−

η−1 + η+
1

2
,−
η−2 + η+

2

2
, ...,−

η−n + η+
n

2
},

Θ3 = diag{θ−1 θ
+
1 , θ

−
2 θ

+
2 , ..., θ

−
n θ

+
n },Θ4 = diag{−

θ−1 + θ+
1

2
,−
θ−2 + θ+

2

2
, ...,−

θ−n + θ+
n

2
}.

Assumption 2. [31] Assume that each component of the nonlinear functions f (·) and g(·) are bounded,
which means that there exists positive scalars B f and Bg such that

|| fk(·)|| ≤ B f , ||gk(·)|| ≤ Bg

for k = 1, 2, ..., n.
Remark 1. In fact, the activation functions of neural networks are usually bounded. For example, the
Logistic Sigmoid function h1(x) = {1 + e−ax}−1 and the threshold value function

h2(x) =

{
1, x ≥ 0,
−1, x < 0,

and so on.
Throughout the paper, we need the following lemmas.

Lemma 1. [32] For any positive definite symmetric matrix W ∈ Rn×n and scalar τ > 0, there is∫ t

t−τ
xT (s)dsW

∫ t

t−τ
x(s)ds ≤ τ

∫ t

t−τ
xT (s)Wx(s)ds.

Lemma 2. [33] The linear matrix inequality[
S 11 S 12

S T
12 S 22

]
< 0

is equivalent to the following condition

S 22 < 0, S 11 − S 12S −1
22 S T

12 < 0,

where S 11 and S 22 are symmetric matrices.
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3. Main results

Now, we will analyze the synchronization condition and construct the sliding mode controller.
Theorem 1. Under Assumption 1, if there exists positive definite symmetric matrices Pi,Wi,Ri ∈ Rn×n

such that

Φ1i =



Φ1i,11 0 1
d Ri PiBi − Θ2H PiCi − Θ4H −AT

i Ri − KT
i Ri

∗ −(1 − µ)Wi 0 0 0 0
∗ ∗ − 1

d Ri 0 0 0
∗ ∗ ∗ −H 0 BT

i Ri

∗ ∗ ∗ ∗ −H CT
i Ri

∗ ∗ ∗ ∗ ∗ − 1
d Ri


< 0 (3.1)

for i = 1, 2, ..., l, then the master system (2.1) and slave system (2.4) are in synchronization, where

Φ1i,11 = −PiAi − AT
i Pi − PiKi − KT

i Pi +

l∑
j=1, j,i

πi j(P j − Pi) + Wi −
1
d

Ri − Θ1H − Θ3H.

Proof. Constructing the following Lyapunov function

V(t) = eT (t)Pie(t) +

∫ t

t−d(t)
eT (θ)Wie(θ)dθ +

∫ 0

−d

∫ t

t+s
ėT (θ)Riė(θ)dθds.

The derivative of V(t) along with the trajectories of system (2.9) is

V̇(t) = 2eT (t)Piė(t) + eT (t)
∑l

j=1 πi jP je(t) + eT (t)Wie(t)
−(1 − ḋ(t))eT (t − d(t))Wie(t − d(t)) + dėT (t)Riė(t) −

∫ t

t−d
ėT (θ)Riė(θ)dθ

≤ 2eT (t)Pi[−(Ai + Ki)e(t) + BiF(e(t)) + CiG(e(t − d(t)))]
+eT (t)

∑l
j=1, j,i πi j(P j − Pi)e(t)

+eT (t)Wie(t) − (1 − µ)eT (t − d(t))Wie(t − d(t))
+d[−(Ai + Ki)e(t) + BiF(e(t)) + CiG(e(t − d(t)))]T Ri·

[−(Ai + Ki)e(t) + BiF(e(t)) + CiG(e(t − d(t)))]
− 1

d [e(t) − e(t − d)]T Ri[e(t) − e(t − d)].

Letting ξ(t) = (eT (t), eT (t − d(t)), eT (t − d), FT (e(t)) and GT (e(t − d(t)))T , one yields

V̇(t) ≤ ξT (t)[Φ2i + dΨT RiΨ]ξ(t), (3.2)

where

Φ2i =


Φ2i,11 0 1

d Ri PiBi PiCi

∗ −(1 − µ)Wi 0 0 0
∗ ∗ − 1

d Ri 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0


,

Ψ =
[
−Ai − Ki 0 0 Bi Ci

]
,
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Φ2i,11 = −PiAi − AT
i Pi − PiKi − KT

i Pi +

l∑
j=1, j,i

πi j(P j − Pi) + Wi −
1
d

Ri.

It is noted that

ξT (t)[Φ2i + dΨT RiΨ]ξ(t) −
[

eT (t) FT (e(t))
] [ Θ1H Θ2H

∗ H

] [
e(t)

F(e(t))

]
−
[

eT (t) GT (e(t − d(t)))
] [ Θ3H Θ4H

∗ H

] [
e(t)

G(e(t − d(t)))

]
= ξT (t)[Φ3i + dΨT RiΨ]ξ(t),

(3.3)

where

Φ3i =


Φ1i,11 0 1

d Ri PiBi − Θ2H PiCi − Θ4H
∗ −(1 − µ)Wi 0 0 0
∗ ∗ − 1

d Ri 0 0
∗ ∗ ∗ −H 0
∗ ∗ ∗ ∗ −H


.

By using Lemma 2, we know that Φ3i + dΨT RiΨ < 0 is equivalent to Φ1i < 0. Thus, one obtains
V̇(t) < 0 and system (2.9) is asymptotically stable, which shows that the master system (2.1) and slave
system (2.4) are in synchronization. The proof is completed.
Theorem 2. Under Assumption 2 and the action of controller

u(t) = −Kie(t) − ζ(t)sign(σi(t)), (3.4)

master system (2.1) and slave system (2.4) are in synchronization, where

ζ(t) = B f · ||Mi|| · ||N1i|| + Bg · ||Mi|| · ||N2i|| + α,

and α > 0 is a positive scalar.
Proof. Constructing the following Lyapunov function

U(t) =
1
2
σT

i (t)σi(t),

then

U̇(t) = σT
i (t)σ̇i(t)

= σT
i (t)[Kie(t) − ∆Bi f (xm(t)) − ∆Cig(xm(t − d(t))) − Kie(t) − ζ(t)sign(σi(t))]

≤ ||σi(t)||[||∆Bi|| · || f (xm(t))|| + ||∆Ci|| · ||g(xm(t − d(t)))||] − ζ(t)||σi(t)||.
(3.5)

Because of

||∆Bi|| · || f (xm(t))|| + ||∆Ci|| · ||g(xm(t − d(t)))|| ≤ ||Mi||[B f · ||N1i|| + Bg · ||N2i||],

then
U̇(t) ≤ −α||σi(t)|| = −α

√
2U(t).

Thus, the state trajectories can attain the sliding mode surface in the finite time interval [0,T ∗], where
T ∗ ≤

√
2U(0)
2α . The proof is completed.
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Remark 2. Compared with the uncertain system in [15], we especially considered the effect of time
delay. From Theorems 1 and 2, we see that the designed sliding mode controller can realize the master-
slave synchronization of the Markov jump neural networks.
Remark 3. The control gain Ki can be obtained from matrix inequality (3.1). However, (3.1) is not a
linear matrix inequality. In order to solve it, we can take Pi = Ri.

From Theorem 1, we can obtain the following useful corollary as r(t) = 1, which means that system
(2.1) only has one mode.
Corollary 1. Under Assumption 1, if there exist positive definite symmetric matrices P,W,R ∈ Rn×n

such that

Φ1 =



Φ1,11 0 1
d R PB − Θ2H PC − Θ4H −AT R − KT R

∗ −(1 − µ)W 0 0 0 0
∗ ∗ − 1

d R 0 0 0
∗ ∗ ∗ −H 0 BT R
∗ ∗ ∗ ∗ −H CT R
∗ ∗ ∗ ∗ ∗ − 1

d R


< 0, (3.6)

then the master system{
ẋm(t) = −Axm(t) + (B + ∆B) f (xm(t)) + (C + ∆C)g(xm(t − d(t))) + J,
xm(t) = ϕ(t), t ∈ [−d, 0]

(3.7)

and slave system {
ẋs(t) = −Axs(t) + B f (xs(t)) + Cg(xs(t − d(t))) + J + u(t),
xs(t) = ψ(t), t ∈ [−d, 0]

(3.8)

are in synchronization, where

Φ1,11 = −PA − AT P − PK − KT P + W −
1
d

R − Θ1H − Θ3H.

4. A numerical example

Consider master system (2.1) and slave system (2.4) with the following parameters

A1 =


4 2 1
0 5 −2
0 −2 6

 , A2 =


5 1 2
0 7 0
0 −1 8

 , B1 =


0.2 0.6 0.2
0.2 −0.2 0
0.2 −0.1 −0.1

 ,

B2 =


0.2 0.5 0.3
0.2 −0.4 0
0.3 −0.1 −0.2

 ,C1 =


0.5 0.4 −0.3
0.5 0.1 0.1
0.5 0.1 0.5

 ,C2 =


0.8 −0.3 0.3
0.1 0.2 0.2
−0.6 0.3 0.2

 ,
Π =

[
−2 2
1 −1

]
,M1 =


−0.2
0.5
0.7

 ,M2 =


0.3
0.8
−0.4

 ,
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N11 =
[

0.1 −0.2 −0.1
]
,N12 =

[
0.05 −0.1 −0.03

]
,

N21 =
[
−0.4 0.1 0.3

]
,N22 =

[
−0.1 0.02 0.07

]
, µ = 0.5, d = 2,

f (x(t)) = [tanh(0.5x1(t)), tanh(0.4x2(t)), tanh(0.6x3(t))]T ,

g(x(t)) = [tanh(0.3x1(t)), tanh(0.4x2(t)), tanh(0.2x3(t))]T ,

J1 = 0.5I3, J2 = 0.3I3, Θ1 = Θ3 = I3, Θ2 = Θ4 = −I3,w(t) = sin(t).

By using the linear matrix inequality (LMI) toolbox in the MATLAB, we obtain the following
solutions of inequality (3.1):

P1 =


23.4405 −7.3737 7.0525
−7.3737 65.8658 −20.9492
7.0525 −20.9492 40.9154

 , P2 =


21.2128 −6.2939 7.4587
−6.2939 61.5282 −19.5070
7.4587 −19.5070 38.4827

 ,

W1 =


10.4452 −3.2187 1.4795
−3.2187 24.3005 −7.1256
1.4795 −7.1256 15.5240

 ,W2 =


5.7913 −1.2200 2.4543
−1.2200 16.4749 −4.9476
2.4543 −4.9476 10.7346

 ,
K1 =


0.1366 0.0093 −0.0188
0.0093 0.0550 0.0266
−0.0188 0.0266 0.0902

 ,K2 =


0.1366 0.0093 −0.0188
0.0093 0.0550 0.0266
−0.0188 0.0266 0.0902

 ,
H =


76.6374 0 0

0 59.8245 0
0 0 45.2654

 .
For the initial values xm(0) = (−25, 5, 25)T and xs(0) = (30,−5,−25)T , Figure 1 is the Markovian

jump process in different modes. Figure 2 is the state trajectories of error system (2.5), which shows
that the error system is convergent and the master system synchronizes with the slave system. Figure 3
is the curve of the sliding mode surface, which shows that the state trajectories can arrive at the surface
in a finite time interval.

0 10 20 30 40 50 60
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

t/second

M
o
d
e
s

Figure 1. Markovian jump process r(t).
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Figure 2. The state trajectories of error system (2.5).
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Figure 3. The curve of sliding mode surface (2.7).

5. Conclusions

In this paper, the master-slave synchronization for uncertain neural networks with time delay by
using the sliding mode control method has been studied. An integral sliding mode surface and sliding
mode controller was designed. Moreover, the state trajectories of the neural networks can reach the
sliding mode surface in finite time under the action of the controller. Sufficient conditions in terms
of linear matrix inequalities were presented to guarantee the neural networks asymptotical stability.
Finally, an example was provided to illustrate the validity of the proposed design method. In the
future, we will consider how to solve some physical problems by applying the obtained theoretical
results.
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