Research article

A delay-product-type Lyapunov functional approach for enhanced synchronization of chaotic Lur'e systems using a quantized controller

  • Received: 27 December 2023 Revised: 14 February 2024 Accepted: 27 February 2024 Published: 15 April 2024
  • MSC : 93D05, 93D15

  • The asymptotic synchronization problem of chaotic Lur'e systems in the master-slave framework was explored in this paper. A time-varying delay feedback controller with quantization considerations and a delay-product-type Lyapunov-Krasovskii functional technique were employed to tackle this problem. Consider an error system based on master and slave systems, for which sufficient asymptotic stability requirements are developed to assure that the addressed system achieves proper synchronization. Following that, the desired control gain was determined by finding a feasible solution to these stability requirements. The results of this paper were validated using a numerical example with simulations, which revealed that they were superior to previously published ones.

    Citation: Boomipalagan Kaviarasan, Ramasamy Kavikumar, Oh-Min Kwon, Rathinasamy Sakthivel. A delay-product-type Lyapunov functional approach for enhanced synchronization of chaotic Lur'e systems using a quantized controller[J]. AIMS Mathematics, 2024, 9(6): 13843-13860. doi: 10.3934/math.2024673

    Related Papers:

  • The asymptotic synchronization problem of chaotic Lur'e systems in the master-slave framework was explored in this paper. A time-varying delay feedback controller with quantization considerations and a delay-product-type Lyapunov-Krasovskii functional technique were employed to tackle this problem. Consider an error system based on master and slave systems, for which sufficient asymptotic stability requirements are developed to assure that the addressed system achieves proper synchronization. Following that, the desired control gain was determined by finding a feasible solution to these stability requirements. The results of this paper were validated using a numerical example with simulations, which revealed that they were superior to previously published ones.



    加载中


    [1] K. Shi, X. Liu, H. Zhu, S. Zhong, Y. Liu, C. Yin, Novel integral inequality approach on master-slave synchronization of chaotic delayed Lur'e systems with sampled-data feedback control, Nonlinear Dyn., 83 (2016), 1259–1274. https://doi.org/10.1007/s11071-015-2401-x doi: 10.1007/s11071-015-2401-x
    [2] M. Rehan, M. Tufail, K. S. Hong, Delay-range-dependent synchronization of drive and response systems under input delay and saturation, Chaos Solit. Fractals, 87 (2016), 197–207. http://doi.org/10.1016/j.chaos.2016.04.001 doi: 10.1016/j.chaos.2016.04.001
    [3] S. H. Lee, M. J. Park, O. M. Kwon, R. Sakthivel, Master-slave synchronization for nonlinear systems via reliable control with Gaussian stochastic process, Appl. Math. Comput., 290 (2016), 439–459. https://doi.org/10.1016/j.amc.2016.06.018 doi: 10.1016/j.amc.2016.06.018
    [4] Y. Wang, Y. Zhu, H. R. Karimi, X. Li, Sampled-data exponential synchronization of chaotic Lur'e systems, IEEE Access, 5 (2017), 17834–17840. https://doi.org/10.1109/ACCESS.2017.2741970 doi: 10.1109/ACCESS.2017.2741970
    [5] R. Zhang, D. Zeng, S. Zhong, K. Shi, J. Cui, New approach on designing stochastic sampled-data controller for exponential synchronization of chaotic Lur'e systems, Nonlinear Anal. Hybrid Syst., 29 (2018), 303–321. https://doi.org/10.1016/j.nahs.2018.02.005 doi: 10.1016/j.nahs.2018.02.005
    [6] S. H. Lee, M. J. Park, O. M. Kwon, Synchronization criteria for delayed Lur'e systems and randomly occurring sampled-data controller gain, Commun. Nonlinear Sci. Numer. Simul., 68 (2019), 203–219. https://doi.org/10.1016/j.cnsns.2018.08.003 doi: 10.1016/j.cnsns.2018.08.003
    [7] H. Yang, X. Wang, L. Shu, G. Zhao, S. Zhong, A new sampling interval fragmentation approach to synchronization of chaotic Lur'e systems, Appl. Math. Comput., 348 (2019), 12–24. https://doi.org/10.1016/j.amc.2018.11.009 doi: 10.1016/j.amc.2018.11.009
    [8] Z. Gu, S. Yan, J. H. Park, X. Xie, Event-triggered synchronization of chaotic Lur'e systems via memory-based triggering approach, IEEE Trans. Circuits Syst. II Expr. Bri., 69 (2022), 1427–1431. https://doi.org/10.1109/TCSII.2021.3113955 doi: 10.1109/TCSII.2021.3113955
    [9] Q. Wang, B. Fu, C. Lin, P. Li, Exponential synchronization of chaotic Lur'e systems with time-triggered intermittent control, Commun. Nonlinear Sci. Numer. Simul., 109 (2022), 106298. https://doi.org/10.1016/j.cnsns.2022.106298 doi: 10.1016/j.cnsns.2022.106298
    [10] C. Ma, T. Wang, W. You, Master-slave synchronization of Lurie systems with time-delay based on event-triggered control, AIMS Math., 8 (2023), 5998–6008. https://doi.org/10.3934/math.2023302 doi: 10.3934/math.2023302
    [11] Y. Ni, Z. Wang, Y. Fan, X. Huang, H. Shen, Memory-based event-triggered control for global synchronization of chaotic Lur'e systems and its application, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 1920–1931. https://doi.org/10.1109/TSMC.2022.3207353 doi: 10.1109/TSMC.2022.3207353
    [12] Y. Ni, Z. Wang, Y. Fan, J. Lu, H. Shen, A switching memory-based event-trigger scheme for synchronization of Lur'e systems with actuator saturation: A hybrid Lyapunov method, IEEE Trans. Neural Netw. Learn. Syst., 2023. https://doi.org/10.1109/TNNLS.2023.3273917
    [13] N. Elia, S. K. Mitter, Stabilization of linear systems with limited information, IEEE Trans. Autom. Control, 46 (2001), 1384–1400. https://doi.org/10.1109/9.948466 doi: 10.1109/9.948466
    [14] A. Bicchi, A. Marigo, B. Piccoli, On the reachability of quantized control systems, IEEE Trans. Autom. Control, 47 (2002), 546–563. https://doi.org/10.1109/9.995034 doi: 10.1109/9.995034
    [15] M. Fu, L. Xie, The sector bound approach to quantized feedback control, IEEE Trans. Autom. Control, 50 (2005), 1698–1711. https://doi.org/10.1109/TAC.2005.858689 doi: 10.1109/TAC.2005.858689
    [16] L. Qiu, G. Gu, W. Chen, Stabilization of networked multi-input systems with channel resource allocation, IEEE Trans. Autom. Control, 58 (2013), 554–568. https://doi.org/10.1109/TAC.2012.2218065 doi: 10.1109/TAC.2012.2218065
    [17] X. Xiao, L. Zhou, Z. Zhang, Synchronization of chaotic Lur'e systems with quantized sampled-data controller, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2039–2047. https://doi.org/10.1016/j.cnsns.2013.10.020 doi: 10.1016/j.cnsns.2013.10.020
    [18] S. Liu, L. Zhou, Network synchronization and application of chaotic Lur'e systems based on event-triggered mechanism, Nonlinear Dyn., 83 (2016), 2497–2507. https://doi.org/10.1007/s11071-015-2498-y doi: 10.1007/s11071-015-2498-y
    [19] R. Zhang, D. Zeng, X. Liu, S. Zhong, K. Shi, A new method for quantized sampled-data synchronization of delayed chaotic Lur'e systems, Appl. Math. Model., 70 (2019), 471–489. https://doi.org/10.1016/j.apm.2019.01.041 doi: 10.1016/j.apm.2019.01.041
    [20] T. Wu, J. H. Park, L. Xiong, X. Xie, H. Zhang, A novel approach to synchronization conditions for delayed chaotic Lur'e systems with state sampled-data quantized controller, J. Franklin Inst., 357 (2020), 9811–9833. https://doi.org/10.1016/j.jfranklin.2019.11.083 doi: 10.1016/j.jfranklin.2019.11.083
    [21] Y. Rao, D. Tong, Q. Chen, W. Zhou, Y. Xu, Synchronization of chaotic Lur'e systems with time-delays via quantized output feedback control, Trans. Inst. Meas. Control, 43 (2021), 933–944. https://doi.org/10.1177/0142331220950864 doi: 10.1177/0142331220950864
    [22] T. H. Lee, J. H. Park, Improved criteria for sampled-data synchronization of chaotic Lur'e systems using two new approaches, Nonlinear Anal. Hybrid Syst., 24 (2017), 132–145. https://doi.org/10.1016/j.nahs.2016.11.006 doi: 10.1016/j.nahs.2016.11.006
    [23] J. Park, S. Y. Lee, P. Park, An improved fragmentation approach to sampled-data synchronization of chaotic Lur'e systems, Nonlinear Anal. Hybrid Syst., 29 (2018), 333–347. https://doi.org/10.1016/j.nahs.2018.02.006 doi: 10.1016/j.nahs.2018.02.006
    [24] C. Ge, B. Wang, J. H. Park, C. Hua, Improved synchronization criteria of Lur'e systems under sampled-data control, Nonlinear Dyn., 94 (2018), 2827–2839. https://doi.org/10.1007/s11071-018-4527-0 doi: 10.1007/s11071-018-4527-0
    [25] H. Zhang, J. Cao, L. Xiong, Novel synchronization conditions for time-varying delayed Lur'e system with parametric uncertainty, Appl. Math. Comput., 350 (2019), 224–236. https://doi.org/10.1016/j.amc.2018.12.073 doi: 10.1016/j.amc.2018.12.073
    [26] Y. Wu, L. Xiong, G. Zhai, T. Wu, Improved synchronization analysis for delayed Lur'e systems using improved technique, Int. J. Control Autom. Syst., 19 (2021), 1480–1490. http://doi.org/10.1007/s12555-020-0111-8 doi: 10.1007/s12555-020-0111-8
    [27] C. G. Wei, Y. He, X. C. Shangguan, Y. L. Fan, Master-slave synchronization for time-varying delay chaotic Lur'e systems based on the integral-term-related free-weighting-matrices technique, J. Franklin Inst., 359 (2022), 9079–9093. https://doi.org/10.1016/j.jfranklin.2022.08.027 doi: 10.1016/j.jfranklin.2022.08.027
    [28] C. K. Zhang, Y. He, L. Jiang, M. Wu, H. B. Zeng, Delay-variation-dependent stability of delayed discrete-time systems, IEEE Trans. Autom. Control, 61 (2016), 2663–2669. https://doi.org/10.1109/TAC.2015.2503047 doi: 10.1109/TAC.2015.2503047
    [29] C. K. Zhang, Y. He, L. Jiang, M. Wu, Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals, IEEE Trans. Autom. Control, 62 (2017), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381 doi: 10.1109/TAC.2016.2635381
    [30] T. H. Lee, J. H. Park, Improved stability conditions of time-varying delay systems based on new Lyapunov functionals, J. Franklin Inst., 355 (2018), 1176–1191. https://doi.org/10.1016/j.jfranklin.2017.12.014 doi: 10.1016/j.jfranklin.2017.12.014
    [31] Z. Lian, Y. He, C. K. Zhang, M. Wu, Stability and stabilization of T-S fuzzy systems with time-varying delays via delay-product-type functional method, IEEE Trans. Cybern., 50 (2020), 2580–2589. https://doi.org/10.1109/TCYB.2018.2890425 doi: 10.1109/TCYB.2018.2890425
    [32] F. Long, C. K. Zhang, L. Jiang, Y. He, M. Wu, Stability analysis of systems with time-varying delay via improved Lyapunov-Krasovskii functionals, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2457–2466. https://doi.org/10.1109/TSMC.2019.2914367 doi: 10.1109/TSMC.2019.2914367
    [33] Z. Zhao, W. Lin, Extended dissipative analysis for memristive neural networks with two-delay components via a generalized delay-product-type Lyapunov-Krasovskii functional, AIMS Math., 8 (2023), 30777–30789. https://doi.org/10.3934/math.20231573 doi: 10.3934/math.20231573
    [34] W. Duan, Y. Li, Y. Sun, J. Chen, X. Yang, Enhanced master-slave synchronization criteria for chaotic Lur'e systems based on time-delayed feedback control, Math. Comput. Simul., 177 (2020), 276–294. https://doi.org/10.1016/j.matcom.2020.04.010 doi: 10.1016/j.matcom.2020.04.010
    [35] C. Ge, X. Liu, Y. Liu, C. Hua, Synchronization stability criteria for Lur'e systems via delay-product-type functional method, Circuits Syst. Signal Process., 42 (2023), 2088–2106. https://doi.org/10.1007/s00034-022-02210-4 doi: 10.1007/s00034-022-02210-4
    [36] C. Zhang, Y. Sun, W. Duan, Improvement master-slave robustly synchronous criteria of uncertain chaotic Lur'e systems via an augmented Lyapunov-Krasovskii functional, Trans. Inst. Meas. Control, 46 (2023). https://doi.org/10.1177/01423312231188174
    [37] C. K. Zhang, Y. He, L. Jiang, W. J. Lin, M. Wu, Delay-dependent stability analysis of neural networks with time-varying delay: A generalized free-weighting-matrix approach, Appl. Math. Comput., 294 (2017), 102–120. https://doi.org/10.1016/j.amc.2016.08.043 doi: 10.1016/j.amc.2016.08.043
    [38] M. J. Park, S. H. Lee, B. Kaviarasan, O. M. Kwon, Secure communication in complex dynamical networks via time-delayed feedback control, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 1116–1125. https://doi.org/10.1109/TSMC.2022.3193056 doi: 10.1109/TSMC.2022.3193056
    [39] S. Gong, Z. Guo, S. Wen, Finite-time synchronization of T-S fuzzy memristive neural networks with time delay, Fuzzy Sets Syst., 459 (2023), 67–81. https://doi.org/10.1016/j.fss.2022.10.013 doi: 10.1016/j.fss.2022.10.013
    [40] Y. Gao, J. Yu, C. Hu, S. Wen, F. Kong, Fixed/preassigned-time output synchronization for T-S fuzzy complex networks via quantized control, Nonlinear Anal. Hybrid Syst., 51 (2024), 101434. https://doi.org/10.1016/j.nahs.2023.101434 doi: 10.1016/j.nahs.2023.101434
    [41] K. Xiong, J. Yu, C. Hu, S. Wen, F. Kong, Nonseparation analysis-based finite/fixed-time synchronization of fully complex-valued impulsive dynamical networks, Appl. Math. Comp., 467 (2024), 128500. https://doi.org/10.1016/j.amc.2023.128500 doi: 10.1016/j.amc.2023.128500
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(664) PDF downloads(63) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog