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Abstract: The asymptotic synchronization problem of chaotic Lur’e systems in the master-slave
framework was explored in this paper. A time-varying delay feedback controller with quantization
considerations and a delay-product-type Lyapunov-Krasovskii functional technique were employed to
tackle this problem. Consider an error system based on master and slave systems, for which sufficient
asymptotic stability requirements are developed to assure that the addressed system achieves proper
synchronization. Following that, the desired control gain was determined by finding a feasible solution
to these stability requirements. The results of this paper were validated using a numerical example
with simulations, which revealed that they were superior to previously published ones.
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1. Introduction

Chaotic systems, which are a form of dynamic system, are extremely sensitive to initial conditions.
Despite their natural predictability, chaotic systems are distinguished by their unpredictability and the
perception of randomness. However, they have a broader range of applications in a variety of natural
and artificial systems, including pattern recognition, biological systems, and secure communication.
It should be emphasized that synchronization is a critical issue of study in all these systems. In
the last two decades, a large number of works on the synchronization of chaotic systems have been
published (for example, see [1–6]). The majority of these works describe chaotic systems in the Lur’e
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form, which includes both a linear and a nonlinear term that meets the sector-bound constraint. Such
systems are frequently referred to as chaotic Lur’e systems. It should be pointed out that the master-
slave paradigm is commonly used to synchronize chaotic Lur’e systems, with the goal of designing
an adequate controller so that the slave system’s output follows the master system’s output [7–12].
Despite substantial research on the subject, strengthening the synchronization criterion by increasing
the sampling period or time delay bound in the control design remains a point of contention, indicating
that more research is needed.

To address the synchronization issues of chaotic Lur’e systems, numerous control techniques have
been presented in the literature. One of the most difficult aspects of designing a synchronization
controller is delivering signals over input channels with limited capacity, which is especially prevalent
in digital computer control systems that apply finite-precision arithmetic. To overcome this issue,
signal quantization has been implemented [13, 14]; nevertheless, this cannot be directly addressed by
classical control theory, as the signal transmission is accomplished with infinite precision. So research
communities utilized the sector-bound approach [15, 16], which is now widely employed to attenuate
quantization effects by interpreting quantization error as nonlinearity or uncertainty and bounding it.
Following these pioneering research, some significant challenges on synchronization of chaotic Lur’e
systems with quantized feedback control techniques have been reported [17–21]. Interestingly, in [19],
a quantized sampled-data controller design for delayed chaotic Lur’e systems has been proposed by
presenting the extended Wirtinger-inequality-based Lyapunov approach, which results in a longer
sampling period than some previous ones; and in [20], some improved synchronization conditions
for delayed chaotic Lur’e systems with a quantized sampled-data controller have been obtained by
developing a novel Lyapunov functional based on the auxiliary function-based integral inequality. As
a result, considering the influence of quantization in controller design for achieving synchronization in
chaotic Lur’e systems is practical and broadens the spectrum of applications.

One of the most important research areas in the field of systems and control theory in recent
years has been the development of improved synchronization criteria for chaotic Lur’e systems. In
order to achieve this goal, researchers developed and used a number of methodologies in addition to
the Lyapunov stability theory. As a result, over the last decade, literature has seen an explosion of
intriguing works on this subject (for example, see [22–27]). In [23], some improved sampled-data
synchronization criteria for two identical chaotic Lur’e systems subject to aperiodic samplings have
been derived by proposing an improved fragmentation strategy and employing the looped-functional
technique. In [25], improved synchronization criteria for uncertain chaotic Lur’e systems with time-
varying delay have been obtained by developing an appropriate Lyapunov-Krasovskii functional with
triple and quadruple integral terms. By introducing the integral-term-related free-weighting-matrices
approach and using the Bessel-Legendre inequality, improved and less conservative synchronization
conditions for chaotic Lur’e systems have been provided in [27]. On the other hand, the delay-
product-type Lyapunov functional technique, which is one of the important methods for improving
the stability of time-varying delayed systems with delay rate information [28, 29], has been widely
used in recent years to support the goal of solving problems in a variety of time-varying delayed
systems. A few significant works on this subject can be found in [30–33]. As a result, researchers have
expressed an interest in applying this technique to improve synchronization criterion for chaotic Lur’e
systems [34–36]. However, there is potential for future exploration in order to reduce conservatism in
these works, which is the objective for conducting this research.
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Motivated by the preceding descriptions, the goal of this research is to provide improved
synchronization conditions for chaotic Lur’e systems with a quantized time-varying delay feedback
controller. To summarize, the contributions of this paper to the achievement of this goal are as follows:

• A feedback controller that takes into account time-varying delay and quantization is designed to
achieve synchronization in chaotic Lur’e systems, guaranteeing that the control system responds
predictably and dependably.
• To reduce the conservatism of synchronization criteria for the considered system, an augmented

Lyapunov-Krasovskii functional with quadratic, integral, and delay-product terms is employed in
conjunction with a generalized free-weighting-matrix technique, an augmented zero equality, and
a convex combination strategy.
• Chua’s circuit model is utilized to demonstrate the relationship between quantization density and

time-varying delay, as well as the superiority of the established synchronization criteria, implying
that the results of this paper provide a larger delay bound than those reported previously, such as
in [26, 27, 34, 36].

This paper is briefly described as follows: The description of chaotic Lur’e systems and the
design of quantized time-varying delay feedback controller is covered in Section 2. The asymptotic
synchronization conditions for the addressed system are presented in Section 3. The validation
of theoretical findings and the overall conclusion of this work are provided in Sections 4 and 5,
respectively. Table 1 lists the notations used in this work together with their meanings for the sake
of brevity.

Table 1. Notations and their meanings.

Notations Meanings
R Set of real numbers
Rm m-dimensional Euclidean space
Rm×n Set of m × n real-valued matrices
Sm Set of m × m symmetric real-valued matrices
Sm

+ Set of m × m positive definite symmetric real-valued matrices
Dm

+ Set of m × m positive definite diagonal real-valued matrices

col{x1, x2, . . . , xn}
[
xT

1 xT
2 · · · xT

n

]T

diag{· · · } Block diagonal matrix
sym{Q} Q + QT

∗ Term to be induced by symmetry

2. Problem formulation and preliminaries

This paper investigates a class of chaotic Lur’e systems, the dynamics of which are defined in the
master-slave paradigm as follows:
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(Master) :
{

ẋ(t) = Ax(t) + B f (Gx(t)),
y(t) = Cx(t),

(Slave) :
{ ˙̂x(t) = Ax̂(t) + B f (Gx̂(t)) + u(t),

ŷ(t) = Cx̂(t),

(2.1)

where {x(t), x̂(t)} ∈ Rn denote the state vectors of the master and slave systems; f (·) : Rm → Rm is a
diagonal nonlinearity vector in the feedback path of subsystems; u(t) ∈ Rn is the control input vector
susceptible to the quantization effect; {y(t), ŷ(t)} ∈ Rp are the output vectors of the master and slave
systems; A ∈ Rn×n, B ∈ Rn×m, G ∈ Rm×n, and C ∈ Rp×n are given matrices.

In this paper, it is assumed that G = col{gT
1 , g

T
2 , . . . , g

T
m}, where gl ∈ R

n (l = 1, 2, . . . ,m) and f (·)
meets the following sector-bound condition:

k−l ≤
fl(v1) − fl(v2)

v1 − v2
≤ k+

l , v1, v2 ∈ R, v1 , v2, l = 1, 2, . . . ,m, (2.2)

where k−l , k
+
l ∈ R.

Remark 1. The arbitrary scalars k−l and k+
l (l = 1, 2, . . . ,m) in the nonlinear bound

condition (2.2) can have any positive, negative, or zero value. The nonlinear bound conditions
in [4, 8–10, 12, 17, 18, 23, 24] are achieved if the values of k−l (l = 1, 2, . . . ,m) are considered to be
zero. As a result, the condition (2.2) is clearly more generic than certain existing ones, which is
preferable for minimizing the conservatism of the proposed results.

We now provide a time-varying delay feedback controller design that guarantees the asymptotic
synchronization of the system under consideration (2.1). It should be mentioned that inaccurate signal
transmission is an unavoidable technological challenge in information interchange, owing to practical
constraints on the control channel’s transmission capacity. As a result, signal quantization is important
to consider while designing a controller. The design goal of a quantized controller is to simplify the
control system by limiting the controller output to a finite set of discrete values. While this technique
has benefits such as simplicity and robustness, it does have precision limitations that must be carefully
examined during the design phase. In light of this, the following controller, which considers the
influence of quantization, is utilized for (2.1):

u(t) = KQ(y(t − h(t)) − ŷ(t − h(t))), (2.3)

where Q(·) = [Q1(·), Q2(·), . . . , Qp(·)]T is the logarithmic quantizer; K ∈ Rn×p is the control gain to be
determined and h(t) is a time-varying delay that is assumed to satisfy 0 ≤ h(t) ≤ hM and µ1 ≤ ḣ(t) ≤
µ2 < 1, where hM and µa (a = 1, 2) are given scalars.

The logarithmic quantizer Q(·) is assumed to be symmetric with Q j($) = −Q j(−$) ( j = 1, 2, . . . , p)
throughout this paper, and the quantization levels are explored for each logarithmic quantizer as: Q j =

{±λ
j
q : λ j

q = (σ j)qλ
j
0, q = 0,±1,±2, . . .} ∪ {0}, where λ j

0 > 0 and σ j ∈ (0, 1) ( j = 1, 2, . . . , p) are the
scaling parameter and quantization density of the j-th quantizer, respectively. The corresponding j-th
quantizer Q j($) is defined as follows:

Q j($) =


−Q j(−$), if $ < 0,

0, if $ = 0,
λ

j
q, if 1

1+ρ j
λ

j
q < $ ≤

1
1−ρ j

λ
j
q,
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where ρ j = 1−σ j

1+σ j ∈ (0, 1). As a result, the following conclusion is straightforward:{
(1 + ρ j)$ < λ

j
q ≤ (1 − ρ j)$, for $ < 0,

(1 − ρ j)$ ≤ λ
j
q < (1 + ρ j)$, for $ ≥ 0.

Using the sector bound approach in [15] and the above constraints, the j-th quantizer is represented
as Q j($) = (1 + ∆ j)$, where ∆ j ∈ [−ρ j, ρ j]. Furthermore, by defining ∆̃ = diag{∆1,∆2, . . . ,∆p}, the
controller (2.3) is rewritten as

u(t) = K(Ip + ∆̃)C(x(t − h(t)) − x̂(t − h(t))). (2.4)

By considering the synchronization error vector as e(t) = x(t) − x̂(t), the following error dynamics can
be obtained:

ė(t) = Ae(t) − K(Ip + ∆̃)Ce(t − h(t)) + Bϕ(Ge(t)), (2.5)

where ϕ(Ge(t)) = f (Gx(t)) − f (Gx̂(t)).
Let gT

l represent the l-th row vector of the matrix G. The following is then derived from (2.2):

k−l ≤
ϕl(gT

l e(t))
gT

l e(t)
=

fl(gT
l (e(t) + x̂(t))) − fl(gT

l x̂(t))
gT

l e(t)
≤ k+

l , gT
l , 0, l = 1, 2, . . . ,m. (2.6)

To accomplish the goal of this study, the following section uses the Lyapunov-Krasovskii stability
theory and the lemma given below.

Lemma 1. [37] For any matrices {X,Y} of appropriate dimensions and Q ∈ Sn
+, the following

inequality holds for all continuously differentiable function {x(t) ∈ Rn : t ∈ [a1, a2]}:

−

∫ a2

a1

xT (v)Qx(v)dv ≤ sym{ηT
0 Xθ1 + ηT

0 Yθ2} + (a2 − a1)ηT
0

(
XQ−1XT +

1
3

YQ−1YT
)
η0,

where η0 is any vector, θ1 =
∫ a2

a1
x(v)dv and θ2 = −θ1 + 2

a2−a1

∫ a2

a1

∫ a2

w
x(v)dvdw.

3. Main results

The required synchronization criteria are developed and stated as linear matrix inequalities in this
section. Consider the augmented vector and notations listed below for ease of representation:

ξ(t) = col




e(t)
e(t − h(t))
e(t − hM)

ė(t)

 ,


ė(t − h(t))
ė(t − hM)
χ1(h(t), 0)
χ1(hM, h(t))

 ,


1
h(t)χ2(h(t), 0)
1

dM(t)χ2(hM, h(t))
1

h(t)χ1(h(t), 0)
1

dM(t)χ1(hM, h(t))

 , ϕ(Ge(t))

 ∈ R
(12n+m),

dM(t) = hM − h(t), ḋh(t) = 1 − ḣ(t), χ1(a, b) =

∫ t−b

t−a
e(v)dv, χ2(a, b) =

∫ t−b

t−a

∫ t−b

w
e(v)dvdw.
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Furthermore, the desired synchronization analysis is divided into two portions based on the proposed
control law (2.4): (i) Without quantization effect and (ii) with quantization effect. To begin, consider
the following error system derived from (2.5) by ignoring the quantization impact:

ė(t) = Ae(t) − KCe(t − h(t)) + Bϕ(Ge(t)). (3.1)

Let us establish the asymptotic stability criterion for (3.1) in the following theorem, which assures the
desired synchronization of (2.1) via the proposed controller (2.4) without the quantization influence.

Theorem 1. Given scalars γ > 0, hM > 0, and µ1 ≤ µ2 < 1, the error system (3.1) is asymptotically
stable if there are matrices P ∈ S7n

+ , Qa ∈ S
6n
+ , Q3 ∈ S

3n
+ , Ra ∈ S

4n
+ , H1 = diag{α1, α2, . . . , αm} ∈ D

m
+ ,

H2 = diag{β1, β2, . . . , βm} ∈ D
m
+ , H3 ∈ D

m
+ , Na ∈ S

2n, {Xa,Ya} ∈ R
(12n+m)×3n, L ∈ Rn×n, U ∈ Rn×m, and

W ∈ R(12n+m)×2n (a = 1, 2) such that the requirements listed below hold for ḣ(t) ∈ {µ1, µ2}:
Φ(0, ḣ(t)) hMη0X2 hMη0Y2

∗ −hMQN2 03n

∗ ∗ −3hMQN2

 < 0, (3.2)


Φ(hM, ḣ(t)) hMη0X1 hMη0Y1

∗ −hMQN1 03n

∗ ∗ −3hMQN1

 < 0, (3.3)

where

Φ(h(t), ḣ(t)) = Π1(h(t), ḣ(t)) + Π2(h(t), ḣ(t)) + Π3(h(t)) + Π4(h(t), ḣ(t)) + Π5 + Π6 + Π7 + Π8(h(t)),
Π1(h(t), ḣ(t)) = sym{[ϑ1, ϑ2, ϑ3, ϑ7, ϑ8, h(t)ϑ9, dM(t)ϑ10]P

× [ϑ4, ḋh(t)ϑ5, ϑ6, ϑ1 − ḋh(t)ϑ2, ḋh(t)ϑ2 − ϑ3, h(t)ϑ1 − ḋh(t)ϑ7, dM(t)ḋh(t)ϑ2 − ϑ8]T },

Π2(h(t), ḣ(t)) = [ϑ1, ϑ4, ϑ0, ϑ0, ϑ7, ϑ1 − ϑ2]Q1[ϑ1, ϑ4, ϑ0, ϑ0, ϑ7, ϑ1 − ϑ2]T

− [ϑ2, ϑ5, ϑ7, ϑ1 − ϑ2, ϑ0, ϑ0]ḋh(t)Q1[ϑ2, ϑ5, ϑ7, ϑ1 − ϑ2, ϑ0, ϑ0]T

+ sym{[ϑ7, ϑ1 − ϑ2, h(t)ϑ9, h(t)ϑ1 − ϑ7, h(t)(ϑ7 − ϑ9), ϑ7 − h(t)ϑ2]Q1

× [ϑ0, ϑ0, ϑ1, ϑ4,−ḋh(t)ϑ2,−ḋh(t)ϑ5]T }

+ [ϑ2, ϑ5, ϑ0, ϑ0, ϑ8, ϑ2 − ϑ3]ḋh(t)Q2[ϑ2, ϑ5, ϑ0, ϑ0, ϑ8, ϑ2 − ϑ3]T

− [ϑ3, ϑ6, ϑ8, ϑ2 − ϑ3, ϑ0, ϑ0]Q2[ϑ3, ϑ6, ϑ8, ϑ2 − ϑ3, ϑ0, ϑ0]T

+ sym{[ϑ8, ϑ2 − ϑ3, dM(t)ϑ10, dM(t)ϑ2 − ϑ8, dM(t)(ϑ8 − ϑ10), ϑ8 − dM(t)ϑ3]Q2

× [ϑ0, ϑ0, ḋh(t)ϑ2, ḋh(t)ϑ5,−ϑ3,−ϑ6]T },

Π3(h(t)) = [ϑ1, ϑ4, ϑ0]hMQ3[ϑ1, ϑ4, ϑ0]T + sym{[h(t)ϑ9 + dM(t)(ϑ7 + ϑ8), hMϑ1 − ϑ7 − ϑ8,

× (h2
M/2)ϑ1 − h(t)ϑ9 − dM(t)(ϑ7 + ϑ10)]Q3[ϑ0, ϑ0, ϑ4]T } + [ϑ1, ϑ0]N1[ϑ1, ϑ0]T

− [ϑ2, ϑ1 − ϑ2](N1 − N2)[ϑ2, ϑ1 − ϑ2]T − [ϑ3, ϑ1 − ϑ3]N2[ϑ3, ϑ1 − ϑ3]T

+ Θ1(h(t)) + Θ2(h(t)),
Π4(h(t), ḣ(t)) = [ϑ1, ϑ2, ϑ7, ϑ9]ḣ(t)R1[ϑ1, ϑ2, ϑ7, ϑ9]T − [ϑ1, ϑ2, ϑ8, ϑ10]ḣ(t)R2[ϑ1, ϑ2, ϑ8, ϑ10]T

+ sym{[ϑ1, ϑ2, ϑ7, ϑ9]R1[h(t)ϑ4, h(t)ḋh(t)ϑ5, h(t)(ϑ1 − ḋh(t)ϑ2), h(t)ϑ1 − ḋh(t)ϑ7 − ḣ(t)ϑ9]T }

+ sym{[ϑ1, ϑ2, ϑ8, ϑ10]R2

× [dM(t)ϑ4, dM(t)ḋh(t)ϑ5, dM(t)(ḋh(t)ϑ2 − ϑ3), dM(t)ḋh(t)ϑ2 − ϑ8 + ḣ(t)ϑ10]T },
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Π5 = sym{(ϑ13 − ϑ1GT M−)H1GϑT
4 + (ϑ1GT M+ − ϑ13)H2GϑT

4 },

Π6 = −sym{(ϑ13 − ϑ1GT M−)H3(ϑ13 − ϑ1GT M+)T },

Π7 = sym{(ϑ1 + γϑ4)(LAϑT
1 − UCϑT

2 + LBϑT
13 − LϑT

4 )},
Π8(h(t)) = sym{W[ϑ7 − h(t)ϑ11, ϑ8 − dM(t)ϑ12]T }, η0 = [ϑ1, ϑ2, . . . , ϑ13],
Θ1(h(t)) = sym{η0X1[ϑ7, ϑ1 − ϑ2, h(t)ϑ1 − ϑ7]T + η0Y1[−ϑ7 + 2ϑ9, ϑ1 + ϑ2 − 2ϑ11, ϑ7 − 2ϑ9]T },

Θ2(h(t)) = sym{η0X2[ϑ8, ϑ2 − ϑ3, dM(t)ϑ1 − ϑ8]T + η0Y2[−ϑ8 + 2ϑ10, ϑ2 + ϑ3 − 2ϑ12, ϑ8 − 2ϑ10]T },

M− = diag{k−1 , k
−
2 , . . . , k

−
m}, M+ = diag{k+

1 , k
+
2 , . . . , k

+
m},

QNa = Q3 + sym




In 0n

0n 0n

0n In

 Na

[
0n In 0n

0n −In 0n

] , a = 1, 2,

ϑi = [0n×(i−1)n, In, 0n×((12−i)n+m)]T , i = 1, 2, . . . , 12, ϑ13 = [0m×12n, Im]T , ϑ0 = 0(12n+m)×n.

Based on the foregoing results, the proposed control gain is calculated using the equation K = L−1U.

Proof. Select an augmented Lyapunov-Krasovskii functional candidate with delay-product terms for
the error system (3.1), as indicated below:

V(e(t)) =

5∑
τ=1

Vτ(e(t)), (3.4)

where

V1(e(t)) = ζT
1 (t)Pζ1(t),

V2(e(t)) =

∫ t

t−h(t)
ζT

2 (t, t − h(t), v)Q1ζ2(t, t − h(t), v)dv

+

∫ t−h(t)

t−hM

ζT
2 (t − h(t), t − hM, v)Q2ζ2(t − h(t), t − hM, v)dv,

V3(e(t)) =

∫ t

t−hM

∫ t

w
ζT

3 (t, v)Q3ζ3(t, v)dvdw,

V4(e(t)) = h(t)ζT
4 (t, h(t), 0)R1ζ4(t, h(t), 0) + dM(t)ζT

4 (t, hM, h(t))R2ζ4(t, hM, h(t)),

V5(e(t)) = 2
m∑

l=1

∫ gT
l e(t)

0
[αl(ϕl(v) − k−l v) + βl(k+

l v − ϕl(v))]dv,

with

ζ1(t) = col{e(t), e(t − h(t)), e(t − hM), χ1(h(t), 0), χ1(hM, h(t)), χ2(h(t), 0), χ2(hM, h(t))},

ζ2(t, s, v) = col
{
ζ(v),

∫ t

v
ζ(w)dw,

∫ v

s
ζ(w)dw

}
, ζ3(t, v) = col

{
ζ(v),

∫ t

v
ė(s)ds

}
,

ζ4(t, s, c) = col
{
e(t), e(t − h(t)), χ1(s, c),

1
s − c

χ2(s, c)
}
, ζ(t) = col{e(t), ė(t)}.

Then, the results of V̇τ(e(t)) (τ = 1, 2, 3, 4, 5) are presented below:

V̇1(e(t)) = 2ζT
1 (t)Pζ̇1(t), (3.5)
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V̇2(e(t)) = ζT
2 (t, t − h(t), t)Q1ζ2(t, t − h(t), t) − ζT

2 (t, t − h(t), t − h(t))ḋh(t)Q1ζ2(t, t − h(t), t − h(t))

+ 2
∫ t

t−h(t)
ζT

2 (t, t − h(t), v)Q1
∂

∂t
[ζ2(t, t − h(t), v)]dv

+ ζT
2 (t − h(t), t − hM, t − h(t))ḋh(t)Q2ζ2(t − h(t), t − hM, t − h(t))

− ζT
2 (t − h(t), t − hM, t − hM)Q2ζ2(t − h(t), t − hM, t − hM)

+ 2
∫ t−h(t)

t−hM

ζT
2 (t − h(t), t − hM, v)Q2

∂

∂t
[ζ2(t − h(t), t − hM, v)]dv, (3.6)

V̇3(e(t)) = ζT
3 (t, t)hMQ3ζ3(t, t) + 2

∫ t

t−hM

∫ t

w
ζT

3 (t, v)Q3
∂

∂t
[ζ3(t, v)]dvdw

−

∫ t

t−h(t)
ζT

3 (t, v)Q3ζ3(t, v)dv −
∫ t−h(t)

t−hM

ζT
3 (t, v)Q3ζ3(t, v)dv, (3.7)

V̇4(e(t)) = ḣ(t)ζT
4 (t, h(t), 0)R1ζ4(t, h(t), 0) + 2h(t)ζT

4 (t, h(t), 0)R1ζ̇4(t, h(t), 0)
− ḣ(t)ζT

4 (t, hM, h(t))R2ζ4(t, hM, h(t)) + 2dM(t)ζT
4 (t, hM, h(t))R2ζ̇4(t, hM, h(t)), (3.8)

V̇5(e(t)) = 2(ϕ(Ge(t)) − M−Ge(t))T H1Gė(t) + 2(M+Ge(t) − ϕ(Ge(t)))T H2Gė(t). (3.9)

In addition, a zero equality is added to V̇3(e(t)), as shown below:

0 =

[
e(t)
0n

]T

N1

[
e(t)
0n

]
−

 e(t − h(t))∫ t

t−h(t)
ė(w)dw

T

N1

 e(t − h(t))∫ t

t−h(t)
ė(w)dw


+

 e(t − h(t))∫ t

t−h(t)
ė(w)dw

T

N2

 e(t − h(t))∫ t

t−h(t)
ė(w)dw

 −  e(t − hM)∫ t

t−hM
ė(w)dw

T

N2

 e(t − hM)∫ t

t−hM
ė(w)dw


− 2

∫ t

t−h(t)

[
e(v)∫ t

v
ė(w)dw

]T

N1

[
ė(v)
−ė(v)

]
dv − 2

∫ t−h(t)

t−hM

[
e(v)∫ t

v
ė(w)dw

]T

N2

[
ė(v)
−ė(v)

]
dv, (3.10)

where Na ∈ S
2n (a = 1, 2). As a result, V̇3(e(t)) is written as follows:

V̇3(e(t)) = ζT
3 (t, t)hMQ3ζ3(t, t) + 2

∫ t

t−hM

∫ t

w
ζT

3 (t, v)Q3
∂

∂t
[ζ3(t, v)]dvdw +

[
e(t)
0n

]T

N1

[
e(t)
0n

]
−

 e(t − h(t))∫ t

t−h(t)
ė(w)dw

T

(N1 − N2)
 e(t − h(t))∫ t

t−h(t)
ė(w)dw

 −  e(t − hM)∫ t

t−hM
ė(w)dw

T

N2

 e(t − hM)∫ t

t−hM
ė(w)dw


−

∫ t

t−h(t)
ζT

3 (t, v)QN1ζ3(t, v)dv −
∫ t−h(t)

t−hM

ζT
3 (t, v)QN2ζ3(t, v)dv. (3.11)

The integral terms involving QNa (a = 1, 2) in (3.11) are bounded using Lemma 1 as follows:

−

∫ t

t−h(t)
ζT

3 (t, v)QN1ζ3(t, v)dv ≤ ξT (t)
[
Θ1(h(t)) + h(t)η0(X1Q−1

N1
XT

1 + (1/3)Y1Q−1
N1

YT
1 )ηT

0

]
ξ(t), (3.12)

−

∫ t−h(t)

t−hM

ζT
3 (t, v)QN2ζ3(t, v)dv ≤ ξT (t)

[
Θ2(h(t)) + dM(t)η0(X2Q−1

N2
XT

2 + (1/3)Y2Q−1
N2

YT
2 )ηT

0

]
ξ(t), (3.13)

where Xa, Ya, Θa(h(t)) (a = 1, 2), and η0 are defined in the theorem statement.
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Consider the following inequality, which is obtained from (2.6), for any H3 ∈ D
m
+ :

0 ≤ −2[ϕ(Ge(t)) − M−Ge(t)]T H3[ϕ(Ge(t)) − M+Ge(t)]. (3.14)

On the other hand, a zero equation based on (3.1) is taken into consideration as follows:

0 = 2[eT (t) + γėT (t)]L[Ae(t) − KCe(t − h(t)) + Bϕ(Ge(t)) − ė(t)]
= 2[eT (t) + γėT (t)][LAe(t) − UCe(t − h(t)) + LBϕ(Ge(t)) − Lė(t)], (3.15)

where L ∈ Rn×n, U = LK, and γ > 0 is a given scalar. Furthermore, a zero equality is considered using
the elements of the augmented vector ξ(t) as follows:

0 = ξT (t)sym
{
W[ϑ7 − h(t)ϑ11, ϑ8 − dM(t)ϑ12]T

}
ξ(t), (3.16)

where W ∈ R(12n+m)×2n.
Using (3.4)–(3.16), the following bound is obtained:

V̇(e(t)) ≤ ξT (t)Φ̄(h(t), ḣ(t))ξ(t), (3.17)

where

Φ̄(h(t), ḣ(t)) = Φ(h(t), ḣ(t)) + η0

[
h(t)(X1Q−1

N1
XT

1 + (1/3)Y1Q−1
N1

YT
1 ) + dM(t)(X2Q−1

N2
XT

2 + (1/3)Y2Q−1
N2

YT
2 )

]
ηT

0 .

Following that, Φ̄(h(t), ḣ(t)) can be expressed as matrices in (3.2) and (3.3) using the Schur complement
and convex combination approach for h(t) ∈ [0, hM] and ḣ(t) ∈ [µ1, µ2]. Then, the system (3.1) can be
guaranteed to be asymptotically stable as a result of the inequalities (3.2) and (3.3). �

The following theorem extends Theorem 1 by including the quantization influence in the proposed
control law.

Theorem 2. Given scalars γ > 0, hM > 0, and µ1 ≤ µ2 < 1, the error system (2.5) is asymptotically
stable if there are matrices P ∈ S7n

+ , Qa ∈ S
6n
+ , Q3 ∈ S

3n
+ , Ra ∈ S

4n
+ , H1 = diag{α1, α2, . . . , αm} ∈ D

m
+ ,

H2 = diag{β1, β2, . . . , βm} ∈ D
m
+ , H3 ∈ D

m
+ , Na ∈ S

2n, {Xa,Ya} ∈ R
(12n+m)×3n, L ∈ Rn×n, U ∈ Rn×m, W ∈

R(12n+m)×2n (a = 1, 2) and scalar ε > 0 such that the requirements listed below hold for ḣ(t) ∈ {µ1, µ2}:
Φ̂(0, ḣ(t)) hMη0X2 hMη0Y2 (ϑ1 + γϑ4)U
∗ −hMQN2 03n 03n×m

∗ ∗ −3hMQN2 03n×m

∗ ∗ ∗ −εIm

 < 0, (3.18)


Φ̂(hM, ḣ(t)) hMη0X1 hMη0Y1 (ϑ1 + γϑ4)U

∗ −hMQN1 03n 03n×m

∗ ∗ −3hMQN1 03n×m

∗ ∗ ∗ −εIm

 < 0, (3.19)

where Φ̂(h(t), ḣ(t)) = Φ(h(t), ḣ(t)) + εϑ2CT Ω̃CϑT
2 with Ω̃ = diag{ρ2

1, ρ
2
2, . . . , ρ

2
p}, and the definition of

Φ(h(t), ḣ(t)) is the same as in Theorem 1. Furthermore, the proposed control gain is calculated using
the equation K = L−1U.
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Proof. The outcomes of this Theorem ((3.18) and (3.19)) are clearly an extended version of the results
of Theorem 1. To complete the proof, consider the steps from (3.4)–(3.16) but use the following zero
equation instead of (3.15):

0 = 2[eT (t) + γėT (t)][LAe(t) − U(Ip + ∆̃)Ce(t − h(t)) + LBϕ(Ge(t)) − Lė(t)]. (3.20)

Using the knowledge that ±2ψT
1ψ2 ≤ δ−1ψT

1ψ1 + δψT
2ψ2, where ψa ∈ R

n (a = 1, 2) and δ > 0, the
following term has a bound as

−2(eT (t) + γėT (t))U∆̃Ce(t − h(t)) ≤ ε−1(eT (t) + γėT (t))UUT (e(t) + γė(t))
+ εeT (t − h(t))CT Ω̃Ce(t − h(t)), (3.21)

where ε > 0 and Ω̃ is defined in the theorem statement.
As a result, the new bound for V̇(e(t)) is given by (3.20) and (3.21) as follows:

V̇(e(t)) ≤ ξT (t)[Φ̄(h(t), ḣ(t)) + εϑ2CT Ω̃CϑT
2 + ε−1(ϑ1 + γϑ4)UUT (ϑ1 + γϑ4)T ]ξ(t), (3.22)

where Φ̄(h(t), ḣ(t)) is specified in (3.17). The matrices (3.18) and (3.19) are then obtained by applying
the Schur complement and convex combination technique to (3.22), as in the prior theorem proof. �

Remark 2. This paper uses the delay-product-type Lyapunov-Krasovskii functional (3.4), which
consists of several augmented vectors in the quadratic, integral, and delay-product terms, to establish
the desired synchronization criteria for chaotic Lur’e systems (2.1). When compared to the works [34]
and [36], the novelty of (3.4) can be stated as follows: The integral terms in this paper include
augmented vectors like

∫ t

s
ζ(v)dv,

∫ s

t−h(t)
ζ(v)dv,

∫ t−h(t)

s
ζ(v)dv,

∫ s

t−hM
ζ(v)dv, where ζ(v) = col{e(v), ė(v)},

whereas the integral terms in [34] and [36] contained vectors like
∫ t

s
ė(v)dv,

∫ s

t−h(t)
ė(v)dv,

∫ t−h(t)

s
ė(v)dv,∫ s

t−hM
ė(v)dv and

∫ t

s
e(v)dv,

∫ s

t−h(t)
e(v)dv,

∫ t−h(t)

s
e(v)dv,

∫ s

t−hM
e(v)dv, respectively. To summarize, certain

cross-terms exist in the obtained findings as a result of the augmented vectors in the integral terms,
which leads to a reduction in the conservatism of the proposed synchronization criteria.

Remark 3. It should be noted that Lemma 1 proposed in [37] is used in Theorems 1 and 2 to achieve
the required synchronization criteria. Despite the fact that this lemma increases computing complexity,
it is possible to lower it without sacrificing actual results by suitably modifying any vector η0 based on
the system parameter values chosen for the feasibility test. Given this, a suitable vector η0, as opposed
to η0 = [ϑ1, ϑ2, . . . , ϑ13] in the results of Theorems 1 and 2, is explored for the numerical example in
the next section.

4. A numerical example

The theoretical findings from the previous section are effectively validated in this section using a
numerical example with simulation results.

Consider the well-known Chua’s circuit model, the dynamics of which are shown below [3, 25–27,
34, 36, 38]: 

ẋ1(t) = α(x2(t) − φ(x1(t))),
ẋ2(t) = x1(t) − x2(t) + x3(t),
ẋ3(t) = −βx2(t),

(4.1)
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with φ(x1(t)) = m1x1(t) + 0.5(m0 − m1)(|x1(t) + 1| − |x1(t) − 1|), where α = 9, β = 14.28, m0 = −1/7,
and m1 = 2/7. The preceding dynamics can be represented as (2.1) with the following parameters:

A =


−αm1 α 0

1 −1 1
0 −β 0

 , B =


−α(m0 − m1)

0
0

 , G = C =
[

1 0 0
]
,

f (θ) = 0.5(|θ + 1| − |θ − 1|) ∈ [0, 1].

Based on these values and the initial condition x(0) = [−0.2,−0.33, 0.2]T , Figure 1 depicts the
responses of the master system, illustrating that the system states move chaotically. Let us look at the
simulation results in two scenarios with respect to the proposed control law (2.4), which are as follows:

-0.4

5

-0.2

4

0

2

0.2

0
0

0.4

-2
-5 -4

Figure 1. Master system.

Case 1. (With quantization effect): Choose µ1 = −0.4, µ2 = 0.4, and γ = 0.6. Furthermore, consider
η0 = [ϑ1, ϑ2, ϑ3, ϑ4, ϑ7, ϑ9, ϑ10, ϑ11, ϑ12] rather than η0 = [ϑ1, ϑ2, . . . , ϑ13] because both scenarios
produce the identical results, which are found using the trial and error method. Then, the maximum
allowable upper bound (MAUB) in relation to different σ1 is determined using the results of Theorem 2
and shown in Table 2 along with the corresponding gain matrix because the quantization density σ1 has
such a large influence on the time delay bound hM. The results of this table demonstrate that the MAUB
hM grows as the quantization density value increases. The following simulation results are shown with
the initial condition x̂(0) = [0.5, 0.1,−0.66]T and using the values σ1 = 0.9 and hM = 0.2929. Figure 2
provides the chaotic behavior of the slave system under the proposed quantized control law (2.4). The
state responses of the master and slave systems, and the synchronization error responses are depicted
in Figures 3 and 4, respectively. These figures show that when the controller (2.4) is used, the required
synchronization is achieved in a short period of time. As a result, because the states of the master and
slave systems do not synchronize in the absence of a controller, the proposed control law is effective
and useful for establishing synchronization of the addressed system (2.1).
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Table 2. MAUB hM for µ1 = −0.4 and µ2 = 0.4.

Theorem 2 hM Control gain matrix K
σ1 = 0.5 0.1555 [4.4151 0.3364 − 3.0349]T

σ1 = 0.6 0.1973 [3.9294 0.2979 − 2.8936]T

σ1 = 0.7 0.2334 [3.5987 0.2722 − 2.8030]T

σ1 = 0.8 0.2650 [3.3651 0.2540 − 2.7453]T

σ1 = 0.9 0.2929 [3.1949 0.2404 − 2.7106]T
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-0.2

4

0

2

0.2

0
0

0.4
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Figure 2. Slave system for Case 1.
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Figure 3. State responses of (2.1) for Case 1.
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Figure 4. Responses of error system (2.5).

Case 2. (Without quantization effect): Using the aforementioned system parameter values, the findings
of Theorem 1 are resolved with γ = 3.5 and η0 as indicated in the preceding case to obtain the
MAUB hM and the corresponding control gain matrix. For comparison purposes, it is assumed that
µ1 = µ2 = 0. Table 3 shows the results obtained in this paper as well as some recently published
ones [3, 25–27, 34, 36, 38], including the MAUB hM, control gain matrix K, and number of decision
variables (DVs) utilized. This table clearly shows that the results of this paper are significantly superior
than those of previous works, demonstrating that the proposed method is less conservative. Although
it increases computational complexity, the major goal of this paper is to lower the conservatism of
the proposed method. In addition, simulation results are provided below based on the values in
Table 3 and the initial condition in the prior case. The chaotic behavior of the slave system under
the proposed control law (2.4) without the influence of quantization is depicted in Figure 5. Figures 6
and 7, respectively, demonstrate the state responses of the master and slave systems, as well as the
synchronization error responses, indicating that the error system (3.1) is asymptotically stable. Based
on these simulations, it is concluded that the system (2.1) achieves asymptotic synchronization under
the controller (2.4) with no quantization impact.

Table 3. MAUB hM for µ1 = µ2 = 0.

Methods hM Control gain matrix K Number of DVs
[25] 0.2722 [3.4852 0.6906 − 3.2849]T 158
[26] 0.2968 [3.2886 0.0981 − 3.0968]T 8832
[3] 0.326 [3.1320 0.1056 − 2.8951]T 348

[38] 0.3349 [3.0079 0.1677 − 2.6385]T 1854
[27] 0.3403 [3.0444 0.0705 − 2.7697]T 1226
[36] 0.3419 [6.3229 1.3205 − 3.6351]T 4539
[34] 0.3461 [4.0133 0.3078 − 5.2217]T 2382

Theorem 1 0.3556 [2.8896 0.0915 − 2.5291]T 2025
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Figure 5. Slave system for Case 2.
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Figure 6. State responses of (2.1) for Case 2.
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Figure 7. Responses of error system (3.1).
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Remark 4. In the preceding example, η0 = [ϑ1, ϑ2, ϑ3, ϑ4, ϑ7, ϑ9, ϑ10, ϑ11, ϑ12] ∈ R37×27 is used instead
of η0 = [ϑ1, ϑ2, . . . , ϑ13] ∈ R37×37 since [37] defines η0 as any vector. Both of these vectors yield the
same results, and the vector η0 ∈ R

37×27 is determined by the trial and error approach. As a result, the
dimensions of the matrices Xa and Ya (a = 1, 2) are chosen to be R27×9 rather than R37×9, which reduces
the number of DVs from 2385 to 2025. It is concluded that any vector in Lemma 1 can be appropriately
adjusted to lower the computational complexity of the proposed synchronization criteria.

5. Conclusions

The quantized master-slave synchronization problem of chaotic Lur’e systems has been addressed
in this paper. The goals here are to provide enhanced synchronization criteria and a quantized
controller design process. These goals have been met by employing the delay-product-type Lyapunov-
Krasovskii functional technique, as well as the generalized free-weighting-matrix technique and
augmented zero equality. To be more specific, Theorems 1 and 2 have presented the asymptotic
synchronization conditions for the considered system via the time-varying delay feedback controller
without and with quantization influence, respectively. These synchronization conditions have been
examined using Chua’s circuit model parameters, and their usefulness and superiority have been
proved through simulations and comparison. It should be noted that finite-time and fixed-time
synchronization problems are currently a research hotspot due to their powerful anti-interference
properties (for example, see [39–41]). As a result, it is worthwhile to examine finite-time or fixed-
time synchronization for chaotic Lur’e systems, which will be explored further in future research.
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