Research article Special Issues

Modified inertial subgradient extragradient algorithms for generalized equilibria systems with constraints of variational inequalities and fixed points

  • Received: 11 February 2024 Revised: 31 March 2024 Accepted: 10 April 2024 Published: 15 April 2024
  • MSC : 47H09, 47H10, 47J20, 47J25

  • In this research, we studied modified inertial composite subgradient extragradient implicit rules for finding solutions of a system of generalized equilibrium problems with a common fixed-point problem and pseudomonotone variational inequality constraints. The suggested methods consisted of an inertial iterative algorithm, a hybrid deepest-descent technique, and a subgradient extragradient method. We proved that the constructed algorithms converge to a solution of the considered problem, which also solved some hierarchical variational inequality.

    Citation: Lu-Chuan Ceng, Shih-Hsin Chen, Yeong-Cheng Liou, Tzu-Chien Yin. Modified inertial subgradient extragradient algorithms for generalized equilibria systems with constraints of variational inequalities and fixed points[J]. AIMS Mathematics, 2024, 9(6): 13819-13842. doi: 10.3934/math.2024672

    Related Papers:

  • In this research, we studied modified inertial composite subgradient extragradient implicit rules for finding solutions of a system of generalized equilibrium problems with a common fixed-point problem and pseudomonotone variational inequality constraints. The suggested methods consisted of an inertial iterative algorithm, a hybrid deepest-descent technique, and a subgradient extragradient method. We proved that the constructed algorithms converge to a solution of the considered problem, which also solved some hierarchical variational inequality.



    加载中


    [1] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student, 63 (1994), 123–145.
    [2] G. Cai, Y. Shehu, O. Iyiola, Strong convergence results for variational inequalities and fixed point problems using modified viscosity implicit rules, Numer. Algor., 77 (2018), 535–558. http://dx.doi.org/10.1007/s11075-017-0327-8 doi: 10.1007/s11075-017-0327-8
    [3] L. Ceng, A. Petrusel, X. Qin, J. Yao, Two inertial subgradient extragradient algorithms for variational inequalities with fixed-point constraints, Optimization, 70 (2021), 1337–1358. http://dx.doi.org/10.1080/02331934.2020.1858832 doi: 10.1080/02331934.2020.1858832
    [4] L. Ceng, M. Shang, Hybrid inertial subgradient extragradient methods for variational inequalities and fixed point problems involving asymptotically nonexpansive mappings, Optimization, 70 (2021), 715–740. http://dx.doi.org/10.1080/02331934.2019.1647203 doi: 10.1080/02331934.2019.1647203
    [5] L. Ceng, C. Wang, J. Yao, Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities, Math. Meth. Oper. Res., 67 (2008), 375–390. http://dx.doi.org/10.1007/s00186-007-0207-4 doi: 10.1007/s00186-007-0207-4
    [6] L. Ceng, J. Yao, A relaxed extragradient-like method for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem, Nonlinear Anal.-Theor., 72 (2010), 1922–1937. http://dx.doi.org/10.1016/j.na.2009.09.033 doi: 10.1016/j.na.2009.09.033
    [7] J. Chen, S. Liu, X. Chang, Extragradient method and golden ratio method for equilibrium problems on Hadamard manifolds, Int. J. Comput. Math., 98 (2021), 1699–1712. http://dx.doi.org/10.1080/00207160.2020.1846728 doi: 10.1080/00207160.2020.1846728
    [8] P. Combettes, S. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117–136.
    [9] R. Cottle, J. Yao, Pseudomonotone complementarity problems in Hilbert space, J. Optim. Theory Appl., 75 (1992), 281–295. http://dx.doi.org/10.1007/BF00941468 doi: 10.1007/BF00941468
    [10] L. Deng, R. Hu, Y. Fang, Projection extragradient algorithms for solving nonmonotone and non-Lipschitzian equilibrium problems in Hilbert spaces, Numer. Algor., 86 (2021), 191–221. http://dx.doi.org/10.1007/s11075-020-00885-x doi: 10.1007/s11075-020-00885-x
    [11] S. Denisov, V. Semenov, L. Chabak, Convergence of the modified extragradient method for variational inequalities with non-Lipschitz operators, Cybern. Syst. Anal., 51 (2015), 757–765. http://dx.doi.org/10.1007/s10559-015-9768-z doi: 10.1007/s10559-015-9768-z
    [12] K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1983.
    [13] L. He, Y. Cui, L. Ceng, T. Zhao, D. Wang, H. Hu, Strong convergence for monotone bilevel equilibria with constraints of variational inequalities and fixed points using subgradient extragradient implicit rule, J. Inequal. Appl., 2021 (2021), 146. http://dx.doi.org/10.1186/s13660-021-02683-y doi: 10.1186/s13660-021-02683-y
    [14] L. Jolaoso, Y. Shehu, J. Yao, Inertial extragradient type method for mixed variational inequalities without monotonicity, Math. Comput. Simulat., 192 (2022), 353–369. http://dx.doi.org/10.1016/j.matcom.2021.09.010 doi: 10.1016/j.matcom.2021.09.010
    [15] G. Korpelevich, The extragradient method for finding saddle points and other problems, Matecon, 12 (1976), 747–756.
    [16] R. Kraikaew, S. Saejung, Strong convergence of the Halpern subgradient extragradient method for solving variational inequalities in Hilbert spaces, J. Optim. Theory Appl., 163 (2014), 399–412. http://dx.doi.org/10.1007/s10957-013-0494-2 doi: 10.1007/s10957-013-0494-2
    [17] X. Li, Z. Liu, Sensitivity analysis of optimal control problems described by differential hemivariational inequalities, SIAM J. Comtrol Optim., 56 (2018), 3569–3597. http://dx.doi.org/10.1137/17M1162275 doi: 10.1137/17M1162275
    [18] T. Lim, H. Xu, Fixed point theorems for asymptotically nonexpansive mappings, Nonlinear Anal.-Theor., 22 (1994), 1345–1355. http://dx.doi.org/10.1016/0362-546X(94)90116-3 doi: 10.1016/0362-546X(94)90116-3
    [19] P. Maingé, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. http://dx.doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z
    [20] A. Moudafi, M. Théra, Proximal and dynamical approaches to equilibrium problems, In: Ill-posed variational problems and regularization techniques, Berlin: Springer, 1999. http://dx.doi.org/10.1007/978-3-642-45780-7_12
    [21] X. Qin, A. Petrusel, B. Tan, J. Yao, Efficient extragradient methods for bilevel pseudomonotone variational inequalities with non-Lipschitz operators and their applications, Fixed Point Theor., 25 (2024), 309–332. http://dx.doi.org/10.24193/fpt-ro.2024.1.19 doi: 10.24193/fpt-ro.2024.1.19
    [22] Y. Shehu, Q. Dong, D. Jiang, Single projection method for pseudo-monotone variational inequality in Hilbert spaces, Optimization, 68 (2019), 385–409. http://dx.doi.org/10.1080/02331934.2018.1522636 doi: 10.1080/02331934.2018.1522636
    [23] Y. Shehu, O. Iyiola, Strong convergence result for monotone variational inequalities, Numer. Algor., 76 (2017), 259–282. http://dx.doi.org/10.1007/s11075-016-0253-1 doi: 10.1007/s11075-016-0253-1
    [24] Y. Song, O. Bazighifan, Two regularization methods for the variational inequality problem over the set of solutions of the generalized mixed equilibrium problem, Mathematics, 10 (2022), 2981. http://dx.doi.org/10.3390/math10162981 doi: 10.3390/math10162981
    [25] Y. Song, Y. Pei, A new viscosity semi-implicit midpoint rule for strict pseudo-contractions and $(\alpha, \beta)$-generalized hybrid mappings, Optimization, 70 (2021), 2635–2653. http://dx.doi.org/10.1080/02331934.2020.1789640 doi: 10.1080/02331934.2020.1789640
    [26] G. Stampacchia, Formes bilineaires coercivities sur les ensembles convexes, R. Acad. Scz. Paris, 258 (1964), 4413–4416.
    [27] B. Tan, S. Li, Modified inertial projection and contraction algorithms with non-monotonic step sizes for solving variational inequalities and their applications, Optimization, 73 (2024), 793–832. http://dx.doi.org/10.1080/02331934.2022.2123705 doi: 10.1080/02331934.2022.2123705
    [28] D. Thong, D. Hieu, Inertial subgradient extragradient algorithms with line-search process for solving variational inequality problems and fixed point problems, Numer. Algor., 80 (2019), 1283–1307. http://dx.doi.org/10.1007/s11075-018-0527-x doi: 10.1007/s11075-018-0527-x
    [29] P. Vuong, Y. Shehu, Convergence of an extragradient-type method for variational inequality with applications to optimal control problems, Numer. Algor., 81 (2019), 269–291. http://dx.doi.org/10.1007/s11075-018-0547-6 doi: 10.1007/s11075-018-0547-6
    [30] H. Xu, T. Kim, Convergence of hybrid steepest-descent methods for variational inequalities, J. Optim. Theory Appl., 119 (2003), 185–201. http://dx.doi.org/10.1023/B:JOTA.0000005048.79379.b6 doi: 10.1023/B:JOTA.0000005048.79379.b6
    [31] J. Yang, H. Liu, Z. Liu, Modified subgradient extragradient algorithms for solving monotone variational inequalities, Optimization, 67 (2018), 2247–2258. http://dx.doi.org/10.1080/02331934.2018.1523404 doi: 10.1080/02331934.2018.1523404
    [32] Y. Yao, O. Iyiola, Y. Shehu, Subgradient extragradient method with double inertial steps for variational inequalities, J. Sci. Comput., 90 (2022), 71. http://dx.doi.org/10.1007/s10915-021-01751-1 doi: 10.1007/s10915-021-01751-1
    [33] Y. Yu, T. Yin, Weak convergence of a self-adaptive Tseng-type algorithm for solving variational inclusion problems, U.P.B. Sci. Bull., Series A, 85 (2023), 51–58.
    [34] Y. Yu, T. Yin, Strong convergence theorems for a nonmonotone equilibrium problem and a quasi-variational inclusion problem, J. Nonlinear Convex Anal., 25 (2024), 503–512.
    [35] Z. Jing, Z. Liu, E. Vilches, C. Wen, J. Yao, Optimal control of an evolution hemivariational inequality involving history-dependent operators, Commun. Nonlinear Sci., 103 (2021), 105992. http://dx.doi.org/10.1016/j.cnsns.2021.105992 doi: 10.1016/j.cnsns.2021.105992
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(630) PDF downloads(60) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog