Citation: Ranbir Kumar, Sunil Kumar, Jagdev Singh, Zeyad Al-Zhour. A comparative study for fractional chemical kinetics and carbon dioxide CO2 absorbed into phenyl glycidyl ether problems[J]. AIMS Mathematics, 2020, 5(4): 3201-3222. doi: 10.3934/math.2020206
[1] | M. A. Al-Jawary, R. K. Raham, A semi-analytical iterative technique for solving chemistry problems, J. King Saud Univ. Sci., 29 (2017), 320-332. doi: 10.1016/j.jksus.2016.08.002 |
[2] | S. Abbasbandy, A. Shirzadi, Homotopy analysis method for a nonlinear chemistry problem, Studies in Nonlinear Sciences, 1 (2010), 127-132. |
[3] | M. AL-Jawary, R. Raham, G. Radhi, An iterative method for calculating carbon dioxide absorbed into phenyl glycidyl ether, Journal of Mathematical and Computational Science, 6 (2016), 620-632. |
[4] | Y. S. Choe, S. W. Park, D. W. Park, et al. Reaction kinetics of carbon dioxide with phenyl glycidyl ether by TEA-CP-MS41 catalyst, J. JPN Petrol. Inst., 53 (2010), 160-166. doi: 10.1627/jpi.53.160 |
[5] | R. Singha, A. M. Wazwaz, Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether: An optimal homotopy analysis method, Match-Commun Math. Co., 81 (2019), 800-812. |
[6] | H. Robertson, The solution of a set of reaction rate equations, Numerical analysis: an introduction, 178182. |
[7] | M. Matinfar, M. Saeidy, B. Gharahsuflu, et al. Solutions of nonlinear chemistry problems by homotopy analysis, Comput. Math. Model., 25 (2014), 103-114. doi: 10.1007/s10598-013-9211-0 |
[8] | D. Ganji, M. Nourollahi, E. Mohseni, Application of he's methods to nonlinear chemistry problems, Comput. Math. Appl., 54 (2007), 1122-1132. doi: 10.1016/j.camwa.2006.12.078 |
[9] | A. Dokoumetzidis, R. Magin, P. Macheras, Fractional kinetics in multi-compartmental systems, J. Pharmacokinet. Phar., 37 (2010), 507-524. doi: 10.1007/s10928-010-9170-4 |
[10] | F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, World Scientific, 2010. |
[11] | I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Vol. 198, Elsevier, 1998. |
[12] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Springer Science & Business Media, 2010. |
[13] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier Science Limited, 2006. |
[14] | S. Das, Functional fractional calculus for system identification and controls, Springer-Verlag, 2008. |
[15] | J. S. Walker, A primer on wavelets and their scientific applications, CRC press, 2002. |
[16] | J. J. Benedetto, Wavelets: mathematics and applications, Vol. 13, CRC press, 1993. |
[17] | C. K. Chui, Wavelets: a mathematical tool for signal analysis, Vol. 1, Siam, 1997. |
[18] | S. Gopalakrishnan, M. Mitra, Wavelet methods for dynamical problems: with application to metallic, composite, and nano-composite structures, CRC Press, 2010. |
[19] | Y. Wang, Q. Fan, The second kind chebyshev wavelet method for solving fractional differential equations, Appl. Math. Comput., 218 (2012), 8592-8601. |
[20] | J.-L. Wu, A wavelet operational method for solving fractional partial differential equations numerically, Appl. Math. Comput., 214 (2009), 31-40. |
[21] | M. Heydari, M. Hooshmandasl, F. Mohammadi, et al. Wavelets method for solving systems of nonlinear singular fractional volterra integro-differential equations, Commun. Nonlinear Sci., 19 (2014), 37-48. doi: 10.1016/j.cnsns.2013.04.026 |
[22] | S. Balaji, Legendre wavelet operational matrix method for solution of fractional order riccati differential equation, Journal of the Egyptian Mathematical Society, 23 (2015), 263-270. doi: 10.1016/j.joems.2014.04.007 |
[23] | M. ur Rehman, R. A. Khan, The legendre wavelet method for solving fractional differential equations, Commun. Nonlinear Sci., 16 (2011), 4163-4173. doi: 10.1016/j.cnsns.2011.01.014 |
[24] | M. Hosseininia, M. Heydari, F. M. Ghaini, et al. A wavelet method to solve nonlinear variableorder time fractional 2d klein-gordon equation, Comput. Math. Appl., 78 (2019), 3713-3730. doi: 10.1016/j.camwa.2019.06.008 |
[25] | P. Pirmohabbati, A. R. Sheikhani, H. S. Najafi, et al. Numerical solution of fractional mathieu equations by using block-pulse wavelets, Journal of Ocean Engineering and Science, 4 (2019), 299-307. doi: 10.1016/j.joes.2019.05.005 |
[26] | M. Hosseininia, M. Heydari, R. Roohi, et al. A computational wavelet method for variable-order fractional model of dual phase lag bioheat equation, J. Comput. Phys., 395 (2019), 1-18. doi: 10.1016/j.jcp.2019.06.024 |
[27] | M. H. Heydari, Z. Avazzadeh, Legendre wavelets optimization method for variable-order fractional poisson equation, Chaos, Solitons & Fractals, 112 (2018), 180-190. |
[28] | S. Kumar, R. Kumar, J. Singh, et al. An efficient numerical scheme for fractional model of hiv-1 infection of cd4+ t-cells with the effect of antiviral drug therapy, Alexandria Engineering Journal, 2020. |
[29] | S. S. Ray, A. Patra, Numerical simulation for fractional order stationary neutron transport equation using haar wavelet collocation method, Nucl. Eng. Des., 278 (2014), 71-85. doi: 10.1016/j.nucengdes.2014.07.010 |
[30] | A. Patra, S. S. Ray, A numerical approach based on haar wavelet operational method to solve neutron point kinetics equation involving imposed reactivity insertions, Ann. Nucl. Energy, 68 (2014), 112-117. doi: 10.1016/j.anucene.2014.01.008 |
[31] | S. S. Ray, A. Patra, Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory van der pol system, Appl. Math. Comput., 220 (2013), 659-667. |
[32] | S. S. Ray, On haar wavelet operational matrix of general order and its application for the numerical solution of fractional bagley torvik equation, Appl. Math. Comput., 218 (2012), 5239-5248. |
[33] | I. Aziz, F. Haq, et al. A comparative study of numerical integration based on haar wavelets and hybrid functions, Comput. Math. Appl., 59 (2010), 2026-2036. doi: 10.1016/j.camwa.2009.12.005 |
[34] | I. Aziz, A. Al-Fhaid, et al. An improved method based on haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders, J. Comput. Appl. Math., 260 (2014), 449-469. doi: 10.1016/j.cam.2013.10.024 |
[35] | I. Aziz, A. Al-Fhaid, A. Shah, et al. A numerical assessment of parabolic partial differential equations using haar and legendre wavelets, Appl. Math. Model., 37 (2013), 9455-9481. doi: 10.1016/j.apm.2013.04.014 |
[36] | R. Jiwari, A haar wavelet quasilinearization approach for numerical simulation of burgers' equation, Comput. Phys. Commun., 183 (2012), 2413-2423. doi: 10.1016/j.cpc.2012.06.009 |
[37] | Ü. Lepik, Solving fractional integral equations by the haar wavelet method, Appl. Math. Comput., 214 (2009), 468-478. |
[38] | Z. Shi, Y.-y. Cao, A spectral collocation method based on haar wavelets for poisson equations and biharmonic equations, Math. Comput. Model., 54 (2011), 2858-2868. doi: 10.1016/j.mcm.2011.07.006 |
[39] | H. Hein, L. Feklistova, Computationally efficient delamination detection in composite beams using haar wavelets, Mech. Syst. Signal Pr., 25 (2011), 2257-2270. doi: 10.1016/j.ymssp.2011.02.003 |
[40] | Z. Gao, X. Liao, Discretization algorithm for fractional order integral by haar wavelet approximation, Appl. Math. Comput., 218 (2011), 1917-1926. |
[41] | C. Chen, C. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proceedings-Control Theory and Applications, 144 (1997), 87-94. doi: 10.1049/ip-cta:19970702 |
[42] | Y. Chen, M. Yi, C. Yu, Error analysis for numerical solution of fractional differential equation by haar wavelets method, J. Comput. Sci., 3 (2012), 367-373. doi: 10.1016/j.jocs.2012.04.008 |
[43] | X. Xie, G. Jin, Y. Yan, et al. Free vibration analysis of composite laminated cylindrical shells using the haar wavelet method, Composite Structures, 109 (2014), 169-177. doi: 10.1016/j.compstruct.2013.10.058 |
[44] | U. Saeed, M. ur Rehman, Haar wavelet-quasilinearization technique for fractional nonlinear differential equations, Appl. Math. Comput., 220 (2013), 630-648. |
[45] | İ. Çelik, Haar wavelet approximation for magnetohydrodynamic flow equations, Appl. Math. Model., 37 (2013), 3894-3902. doi: 10.1016/j.apm.2012.07.048 |
[46] | İ. Çelik, Haar wavelet method for solving generalized burgers-huxley equation, Arab Journal of Mathematical Sciences, 18 (2012), 25-37. doi: 10.1016/j.ajmsc.2011.08.003 |
[47] | G. Hariharan, K. Kannan, K. Sharma, Haar wavelet method for solving fisher's equation, Appl. Math. Comput., 211 (2009), 284-292. |
[48] | L. Wang, Y. Ma, Z. Meng, Haar wavelet method for solving fractional partial differential equations numerically, Appl. Math. Comput., 227 (2014), 66-76. |
[49] | H. Kaur, R. Mittal, V. Mishra, Haar wavelet solutions of nonlinear oscillator equations, Appl. Math. Model., 38 (2014), 4958-4971. doi: 10.1016/j.apm.2014.03.019 |
[50] | Z. Shi, Y. Y. Cao, Q. j. Chen, Solving 2d and 3d poisson equations and biharmonic equations by the haar wavelet method, Appl. Math. Model., 36 (2012), 5143-5161. doi: 10.1016/j.apm.2011.11.078 |
[51] | G. Jin, X. Xie, Z. Liu, The haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory, Composite Structures, 108 (2014), 435-448. doi: 10.1016/j.compstruct.2013.09.044 |
[52] | S. Kumar, A. Kumar, S. Abbas, et al. A modified analytical approach with existence and uniqueness for fractional cauchy reaction-diffusion equations, Advances in Difference Equations, 2020 (2020), 1-18. doi: 10.1186/s13662-019-2438-0 |
[53] | S. Kumar, A. Kumar, S. Momani, et al. Numerical solutions of nonlinear fractional model arising in the appearance of the stripe patterns in two-dimensional systems, Advances in Difference Equations, 2019 (2019), 413. |
[54] | M. Jleli, S. Kumar, R. Kumar, et al. Analytical approach for time fractional wave equations in the sense of yang-abdel-aty-cattani via the homotopy perturbation transform method, Alexan. Eng. J., 2019. |
[55] | S. Kumar, K. S. Nisar, R. Kumar, et al. A new rabotnov fractional-exponential function based fractional derivative for diffusion equation under external force, Mathematical Methods in Applied Science, 2020. |
[56] | B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos, Soliton and Fractals, 133 (2020), 109619. doi: 10.1016/j.chaos.2020.109619 |
[57] | A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, et al. Solitary solutions for time-fractional nonlinear dispersive pdes in the sense of conformable fractional derivative, Chaos: An Interdisciplinary Journal of Nonlinear Science, 29 (2019), 093102. doi: 10.1063/1.5100234 |
[58] | E. F. D. Goufo, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos, Soliton and Fractals, 130 (2020), 109467. |
[59] | S. Bhatter, A. Mathur, D. Kumar, et al. A new analysis of fractional drinfeld-sokolov-wilson model with exponential memory, Physica A: Statistical Mechanics and its Applications, 537 (2020), 122578. doi: 10.1016/j.physa.2019.122578 |
[60] | P. Veeresha, D. G. Prakasha, D. Kumar, An efficient technique for nonlinear time-fractional klein- fock-gordon equation, Appl. Math. Comput., 364 (2020), 124637. |
[61] | D. Kumar, J. Singh, M. A. Al-Qurashi, et al. A new fractional sirs-si malaria disease model with application of vaccines, antimalarial drugs, and spraying, Advances in Difference Equations, 2019 (2019), 278. |
[62] | T. Hull, W. Enright, B. Fellen, et al. Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal., 9 (1972), 603-637. doi: 10.1137/0709052 |
[63] | O. S. Board, Ocean acidification: a national strategy to meet the challenges of a changing ocean, National Academies Press, 2010. |
[64] | S. Muthukaruppan, I. Krishnaperumal, R. Lakshmanan, Theoretical analysis of mass transfer with chemical reaction using absorption of carbon dioxide into phenyl glycidyl ether solution, Appl. Math. Ser. B, 3 (2012), 1179-1186. doi: 10.4236/am.2012.310172 |
[65] | S. Kumar, M. M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Commun., 185 (2014), 1947-1954. doi: 10.1016/j.cpc.2014.03.025 |
[66] | Y. Li, W. Zhao, Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations, Appl. Math. Comput., 216 (2010), 2276-2285. |
[67] | M. Srivastava, S. K. Agrawal, S. Das, Synchronization of chaotic fractional order lotka-volterra system, Int. J. Nonlinear Sci., 13 (2012), 482-494. |
[68] | K. Diethelm, N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput., 154 (2004), 621-640. |
[69] | H. Aminikhah, An analytical approximation to the solution of chemical kinetics system, J. King Saud Univ. Sci., 23 (2011), 167-170. doi: 10.1016/j.jksus.2010.07.003 |
[70] | J. S. Duan, R. Rach, A. M. Wazwaz, Steady-state concentrations of carbon dioxide absorbed into phenyl glycidyl ether solutions by the adomian decomposition method, J. Math. Chem., 53 (2015), 1054-1067. doi: 10.1007/s10910-014-0469-z |
[71] | M. A. AL-Jawary, G. H. Radhi, The variational iteration method for calculating carbon dioxide absorbed into phenyl glycidyl ether, Iosr Journal of Mathematics, 11 (2015), 99-105. |