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Abstract: The essential objective of this work is to implement Adam Bashforth’s Moulton (ABM) and
Haar wavelet method (HWM) to solve fractional chemical kinetics and another problem that relates the
condensations of carbon dioxide (CO2) and phenyl glycidyl ether (PGE) with two variety of Drichlet
and a mixed set of Neumann boundary and Drichlet type conditions respectively. We have been
solved the above system of differential equations by Adam Bashforth’s Moulton and Haar wavelet
operational method where this technique is to convert the system of differential equations into the
system of algebraic equation which can be solved easily. This work is expects to contribute the vast
advantage of Haar wavelets in chemical science. The Adam Bashforth’s Moulton and Haar wavelet
method is impressive and convenient for obtaining numerical solutions of chemical engineering type
problems. A complete agreement is acheived between Adam Bashforth’s Moulton solution and Haar
wavelet solution. To manifest about the performance and applicability of the method, two test examples
are deliberated.
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1. Introduction

Mathematical modelling is the best way to formulating problems from an application area and it is
well known that several mathematical characterization of numerous growth in chemical and physical
sciences is described by differential equations (DEs). In chemistry, chemical kinetics problem and
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CO2 with PGE problems are described by system of nonlinear (DEs) with different kind of Neumann
boundary and Drichlet type conditions in different published work such as chemistry problem by
Jawary and Raham [1], chemistry problem by Abbasbandy and Shirzadi [2], CO2 absorbed into PGE
problem by Jawary et al. [3], Choe et al. [4], Singha et al. [5], CO2 absorbed into PGE problem by
Robertson [6], chemistry problem by Matinfar et al. [7], chemistry problem by Ganji et al. [8],
Dokoumetzidis et al. [9]. In the past few years, fractional calculus (FC) has found many diverse and
robust applications in various research areas such as fluid dynamics, image processing, viscoelasticity
and other physical phenomena. Many definitions of fractional derivatives are discovered by several
mathematicians but two most famous definitions of fractional derivative are Riemann − Liouville and
Caputo. Some interesting and fundamental works on various direction of the FC is given in several
famous books such as by Mainardi [10], fractional differential equations by Podlubny [11],
Diethelm [12], Kilbas et al. [13] and Das [14].

In the past few years, wavelets have become an increasingly newly developed famous mechanism in
the several research areas of physical, chemical, computational sciences, Image manipulation, signal
analysis, data compression, numerical analysis and several others research areas such as a primer on
wavelets and their scinentific applications by Walker [15], wavelet: mathematics and applications by
Benedetto [16], a mathematical tool for signal analysis by Chui [17], wavelet methods for dynamical
problems by Gopalakrishnan and Mitra [18], Wang [19] and a wavelet operational matrix method by
Wu [20]. Due to this reason, wavelets have been applied for the solution of differential equations
(DEs) since the 1980s. The interesting features in this method are possibility to find-out singularities,
irregular structure and transient phenomena exhibited by the analysed equations such as by Heydari et
al. [21], Wang and Fan [19], Balaji [22], Rehman and Khan [23], Hosseininia [24], Pirmohabbati et
al. [25], Hosseininia [26], Heydari [27] and Kumar et al. [28].

Among the several wavelet families most simple are the Haar wavelets and it has been successfully
applied to several linear and nonlinear problems of physical science and other research areas such as
fractional order stationary neutron transport equation, neutron point kinetics equation, fractional order
nonlinear oscillatory van der pol system and fractional bagley torvik equation by Ray and
Patra [29–32], a comparative study on haar wavelet and hybrid functions, nonlinear integral and
integro −differential equation of first and higher order and parabolic differential equatons by Aziz et
al. [33–35], burgers equation by Jiwari [36], fractional integral equations by Lepik [37], Poisson and
biharmonic equations by Shi and Cao [38], delamination detection in composite beams by Hein and
Feklistova [39], fractional order integral equations by Gao and Liao [40], lumped and distributed
parameters systems by Chen and Hsiao [41], FDEs by Chen et al. [42], free vibration analysis by Xie
et al. [43], fractional nonlinear differential equations by Saeed and Rehman [44],
magnetohydrodynamic flow equations by Celik and Brahin [45, 46], fishers equations by Hariharan et
al. [47], FPDEs by Wang et al. [48], nonlinear oscillators equations Kaur et al. [49], poisson and
biharmonic equations by Shi et al. [50] and free vibration analysis of functionally graded cylindrical
shells by Jin et al. [51].

It is compulsory to note that the fractional chemical kinetics and condensations of CO2 and PGE
problems is the first one to be solved by the Haar wavelet and generalization of Adams–
Bashforth−Moulton method by us. It is also noted that there are no similar works with these methods
for fractional chemical kinetics and condensations of CO2 and PGE problems available in any present
published literature. It is well known by the several published research papers that the Caputo and
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Riemann-Liouville is most popular definition of fractional calculus.
The complete work is systematized in the following sections: Overview of basic FC are provided

in section 2. Fractional Model of both Chemical Kinetics and CO2 absorbed into PHE problems are
provided in section 3. In section 4, a haar wavelet and Adam Bashforth’s-Moulton methods are
discussed and presented for both chemistry problems. The proposed methods for solutions of both
chemistry problem are provided in section 5. Numerical result and discussions are provided in section
6. Conclusion and future scope are given in sections 7.

2. Overview of FC

There are numerous definition of derivative and integration are available in literature [52–61].

Definition 1. The (left sided) Riemann−Liouville fractional integral of order α > 0 of a function
Θ(t) ∈ Cα, α ≥ −1 is defined as,

Iαt Θ(t) =
1

Γ(α)

t∫
0

(t − ξ)α−1Θ(ξ)dξ, α > 0, t > 0; (2.1)

where Γ(.) is well known Gamma function.

Definition 2. The next two equations define Riemann – Liouville and Caputo fractional derivatives of
order a, respectively,

RLDα
t Θ(t) = dm

dtm
(
Im−α
t Θ(t)

)
=


dmΘ(t)

dtm , α = m ∈ N,

1
Γ(m−α)

dm

dtm

t∫
0

Θ(ξ)
(t−ξ)α−m+1 dξ, 0 ≤ m − 1 < α < m,

and,

CDα
t Θ(t) = Im−α

t

(
dm

dtm Θ(t)
)

=


dmΘ(t)

dtm , α = m ∈ N,

1
Γ(m−α)

t∫
0

Θm(ξ)
(t−ξ)α−m+1 dξ, 0 ≤ m − 1 < α < m,

where t > 0 and m is an integer. Two basic properties for m − 1 < α ≤ m and Θ ∈ L1[a, b] are given as{
(CDα

t IαΘ)(t) = Θ(t),
(IαCDα

t Θ)(t) = Θ(t) −
∑m−1

k=0 Θk(0+) (t−a)k

k! .
(2.2)

3. Fractional model of Chemical Kinetics and CO2 absorbed into PGE problems

3.1. Fractional model of Chemical Kinetics (CK) problem

LetD,E andH are different location of a model of chemical process then the reactions are presented
as

D −→ E, (3.1)

E +H −→ D +H , (3.2)

E + E −→ H , (3.3)
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The concetrations of all three spaces of D,E and H are denoted by Θ1,Θ2 and Θ3 respectively. Let
r1, r2 and r3 denotes the reaction rate of Eqs (3.1), (3.2) and (3.3) respectively. We consider an integer
order model of chemical kinetics problem as [1, 2, 6–8]

dΘ1(t)
dt = −r1Θ1(t) + r2Θ2(t)Θ3(t),

dΘ2(t)
dt = r1Θ1(t) − r2Θ2(t)Θ3(t) − r3Θ

2
2(t),

dΘ3(t)
dt = r3Θ

2
2(t),

(3.4)

with the initial conditions, Θ1(0) = 1, Θ2(0) = 0, Θ3(0) = 0. The main target of this section is
converted above inter order CK problem into fractional order CK problem. The fractional model of
CK problem is presented as

CDα
t Θ1(t) = −r1Θ1(t) + r2Θ2(t)Θ3(t), 0 < α ≤ 1,

CDβ
t Θ2(t) = r1Θ1(t) − r2Θ2(t)Θ3(t) − r3Θ

2
2(t), 0 < β ≤ 1,

CDγ
t Θ3(t) = r3Θ

2
2(t), 0 < γ ≤ 1,

(3.5)

with the initial conditions, Θ1(0) = 1, Θ2(0) = 0, Θ3(0) = 0 where, Dα
t = dα

dtα ,D
β
t = dβ

dtβ ,D
γ
t = dγ

dtγ are
fractional derivative with 0 < α, β, γ ≤ 1. If r1 = 1, r2 = 0, and r3 = 1 then

CDα
t Θ1(t) = −Θ1(t), 0 < α ≤ 1,

CDβ
t Θ2(t) = Θ1(t) − Θ2

2(t), 0 < β ≤ 1,
CDγ

t Θ3(t) = Θ2
2(t), 0 < γ ≤ 1,

(3.6)

with the initial conditions, Θ1(0) = 1, Θ2(0) = 0, Θ3(0) = 0. The above system is representing a
nonlnear reaction which was taken from litrature [2, 7, 8, 62].

3.2. Fractional model of condensations of CO2 and PGE problem

The CO2 causes in ocean acidification because it dissolves in water to form carbonic acid [63]. The
mathematical formulation of the concentration of CO2 and PGE is shown in Muthukaruppan et al. [64].
Now, the two nonlinear reactions equations in normalized form is presented as d2Υ1

dt2 = α1Υ1Υ2
1+β1Υ1+β2Υ2

,
d2Υ2
dt2 = α2Υ1Υ2

1+β1Υ1+β2Υ2
,

(3.7)

with boundary conditions, Υ1(0) = 0, Υ1(1) = 1
m , Υ′2(0) = 1

m , Υ2(1) = 1
m . The whole chemistry of the

above problem is given in several litratures [1, 3, 4]. The fractional model of the condensation of CO2

and PGE in operator form is given as, CDα
t Υ1(t) = α1Υ1Υ2

1+β1Υ1+β2Υ2
, 1 < α ≤ 2,

CDβ
t Υ2(t) = α2Υ1Υ2

1+β1Υ1+β2Υ2
, 1 < β ≤ 2,

(3.8)

with the same boundary conditions Υ1(0) = 0, Υ1(1) = 1
m and Υ′2(0) = 1

m , Υ2(1) = 1
m ; where m ≥ 3

and fractional operator is taken in Caputo sence.
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4. Overview of Haar wavelet and Adam Bashforth’s−Moulton (ABM) methods

4.1. Haar wavelet

The Haar functions have been discovered by Alfred Haar in 1910 and Haar wavelets are the simplest
wavelet among all wavelet. The Haar sequence was also introduced by itself Alfred Haar in 1909 which
is recognised as wavelet basis. The Haar wavelets are the mathematical operations which are known
as Haar transform. These wavelets are build up by piecewise constant function on the real line. We
used Haar wavelet operational matrix method because of its flexibility, simplicity and require very less
effort of computation. Usually Haar wavelet is defined for [0,1) but in general case we extend it up
to certain interval. Haar functions are very useful in many applications as image coding, extraction of
edge, binary logic design etc [20, 29–51]. The Haar scaling function is defined as

φ(x) =

{
1 0 ≤ x < 1,
0 otherwise.

(4.1)

The Haar wavelet mother function is defined as

ψ(x) =


1 0 ≤ x < 1

2 ,

−1 1
2 ≤ x < 1,

0 otherwise.
(4.2)

The orthogonal set of Haar wavelet functions for t ∈ [0, 1] are defined as

hi(t) =
1
√

m


2 j/2, k−1

2 j ≤ t < k−0.5
2 j ,

−2 j/2, k−0.5
2 j ≤ t < k

2 j ,

0, otherwise,
(4.3)

where i = 0, 1, 2, ...,m−1, m = 2r+1 and r is positive integer known as resolution of Harr wavelet. Also
j and k represent integer decomposition of i = 2 j + k − 1.

4.2. Function approximation

Any function Θ(t) ∈ L2([0, 1)) can be expanded in terms of Haar wavelet by

Θ(t) =

∞∑
i=0

cihi(t); Where ci =

1∫
0

Θ(t)hi(t)dt. (4.4)

If we approximated as piecewise constant during each interval, Eq. 4.4 will terminated at finite terms
as [65]:

Θ(t) ≈
m−1∑
i=0

cihi(t) = CT
mHm(t), (4.5)

where Cm = [c0, c1, c2, ..., cm−1]T and Hm(t) = [h0(t), h1(t), h2(t), ..., hm−1(t)]T ,
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Using collocation points tl =
(l−0.5)

m , where l = 0, 1, ...,m − 1, we obtained the discrete form as

H =


h0(t0) h0(t1) · · · h0(tm−1)
h1(t0) h1(t1) · · · h1(tm−1)
...

...
. . .

...

hm−1(t0) hm−1(t1) · · · hm−1(tm−1)

 . (4.6)

4.3. Haar wavelet operational matrix (HWOM) of fractional order integration

The HWOM of fractional order integration without using block pulse functions we integrate Hm(t)
using Reimann-Liouville integration operator [41, 66]. Then the HWOM of fractional order
integration Qα is given by

QαHm(t) = IαHm(t) = [Iαh0(t), Iαh1(t), Iαh2(t), ..., Iαhm−1(t)]T

= [Qh0(t),Qh1(t),Qh2(t), ...,Qhm−1(t)]T , (4.7)

where
Qh0(t) = 1

√
m

tα
Γ(1+α) , 0 ≤ t ≤ 1,

Qhi(t) = 1
√

m


0, 0 ≤ t < k−1

2 j ,

2 j/2ζ1(t) k−1
2 j ≤ t < k−0.5

2 j ,

2 j/2ζ2(t) k−0.5
2 j ≤ t < k

2 j ,

2 j/2ζ3(t) k
2 j ≤ t < 1,

where
ζ1(t) = 1

Γ(1+α)

(
t − k−1

2 j

)α
,

ζ2(t) = 1
Γ(1+α)

(
t − k−1

2 j

)α
− 2

Γ(1+α)

(
t − k−0.5

2 j

)α
,

ζ3(t) = 1
Γ(1+α)

(
t − k−1

2 j

)α
− 2

Γ(1+α)

(
t − k−0.5

2 j

)α
+ 1

Γ(1+α)

(
t − k

2 j

)α
.

If we take, α = 1/2, m = 8, then we have the operational matrix as given below:

Q1/2H8=



0.0997 0.1727 0.2230 0.2639 0.2992 0.3308 0.3596 0.3863
0.0997 0.1727 0.2230 0.2639 0.0997 −0.0147 −0.0864 −0.1415
0.2443 0.0333 −0.1154 −0.0666 −0.0343 −0.0223 −0.0193 −0.0132

0 0 0 0 0.1410 0.2443 0.033 −0.1154
0.1995 −0.0534 −0.0455 −0.0188 −0.0111 −0.0075 −0.0055 −0.0043

0 0 0.1995 −0.0534 −0.0455 −0.0188 −0.0111 −0.0075
0 0 0 0 0.1995 −0.0534 −0.0455 −0.0188
0 0 0 0 0 0 0.1995 −0.0534


.

The above matrix is the operational matrix of Haar wavelets.

4.4. Adam Bashforth’s-Moulton method

In this section we discuss about Predictor-Corrector scheme (PECE), which is the genralization of
(ABM) mehod [67, 68]. We obtain the numerical solution of nonlinear FDES as
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DαΘ(t) = f (t,Θ(t)), 0 < t ≤ T,
Θ(k)(0) = Θ

(k)
0 ,

(4.8)

where derivative in Caputo’s sense. which is equivalent to the Volterra integral equation

Θ(t) =

α−1∑
k=0

Θk
0

tk

k!
+

1
Γ(α)

∫ t

0
(t − τ)α−1 f (t,Θ(τ))dτ. (4.9)

Assume h = T/N, tn = nh, n = 0, 1, 2, ...,N ∈ Z+ then the discrete form for the above equation will be

Θh(tn+1) =

α−1∑
k=0

Θ
(k)
0

tk
n+1

k!
+

hα

Γ(α + 2)
f (tn+1,Θ

p
h(tn+1)) +

hα

Γ(α + 2)

n∑
j=0

a j,n+1 f (th,Θh(t j)), (4.10)

a j,n+1 =


nα+1 − (n − α)(n + 1)α, i f j = 0,
(n − j + 2)α+1 + (n − j)α+1 − 2(n − j + 1)α+1, i f 0 ≤ j ≤ n,
1, i f j = 1,

(4.11)

Θ
p
h(tn+1) =

α−1∑
k=0

Θ
(k)
0

tk
n+1

k!
+

1
Γ(α)

n∑
j=0

b j,n+1 f (t j,Θh(t j)), (4.12)

b j,n+1 =
hα

α
((n + 1 − j)α − (n − j)α). (4.13)

The corrector values for chemistry problem is

Θ1(n+1) = Θ1(0) +
hα

Γ(α + 2)
(−r1Θ

p
1(n+1) + r2Θ

p
2(n+1)Θ

p
3(n+1)) +

hα

Γ(α + 2)

n∑
j=0

α j,n+1

(−r1Θ1( j) + r2Θ2( j)Θ3( j)),

Θ2(n+1) = Θ2(0) +
hβ

Γ(β + 2)
(r1Θ

p
1(n+1) − r2Θ

p
2(n+1)Θ

p
3(n+1) − r3Θ

p
2(n+1)

2) +
hβ

Γ(β + 2)

n∑
j=0

β j,n+1

(r1Θ1( j) − r2Θ2( j)Θ3( j) − r3Θ
2
2( j)),

Θ3(n+1) = Θ3(0) +
hγ

Γ(γ + 2)
(r3Θ

p
2(n+1)

2) +
hγ

Γ(γ + 2)

n∑
j=0

γ j,n+1r3Θ
2
2( j).

The corresponding predictor values are,

Θ
p
1(n+1) = Θ1(0) +

1
Γ(α)

n∑
j=0

B j,n+1(−r1Θ1( j) + r2Θ2( j)Θ3( j)),
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Θ
p
2(n+1) = Θ2(0) +

1
Γ(β)

n∑
j=0

C j,n+1(r1Θ1( j) − r2Θ2( j)Θ3( j) − r3Θ
2
2( j)),

Θ
p
3(n+1) = Θ3(0) +

1
Γ(γ)

n∑
j=0

D j,n+1(r3Θ
2
2( j)).

From Eqs (4.12) and (4.14) we can calculate α j,n+1, β j,n+1, γ j,n+1, and B j,n+1, C j,n+1, D j,n+1.

5. Proposed methods for solution of both chemistry problems

Example: 1 We assume a fractional model of chemical kinetics problem is given as
CDα

t Θ1 = −r1Θ1 + c2Θ2Θ3, 0 < α ≤ 1,
CDβ

t Θ2 = r1Θ1 − r2Θ2Θ3 − r3Θ
2
2, 0 < β ≤ 1,

CDγ
t Θ3 = r3Θ

2
2, 0 < γ ≤ 1,

(5.1)

with the initial conditions, Θ1(0) = 1, Θ2(0) = 0 Θ3(0) = 0, where r1, r2 and r3 are reaction rates. Let
us assume higher derivatives in the terms of haar wavelet series.

CDα
t Θ1 = CT Hm(t),

CDβ
t Θ2 = GT Hm(t),

CDγ
t Θ3 = KT Hm(t),

(5.2)

where C = [c0, c1, c2, ..., cm−1]T , G = [g0, g1, g2, ..., gm−1]T and K = [k0, k1, k2, ..., km−1]T are unknown
vectors. Applying Riemann-Liouville fractional integral in Eq. (5.2) and using initial conditions, we
obtained 

Θ1 = CT QαHm(t) + 1,
Θ2 = GT QβHm(t),
Θ3 = KT QγHm(t).

(5.3)

Now substituting the values of Θ1, Θ2 and Θ3 into the Eq. (5.1), we obtained.
CT Hm(t) = −r1(CT QαHm(t) + 1) + r2(GT Qβ)(KT Qγ),
GT Hm(t) = r1(CT QαHm(t) + 1) − r2(GT Qβ)(KT Qγ) − r3(KT Qγ)(KT Qγ),
KT Hm(t) = r3(GT Qβ)2.

(5.4)

Let r1 = 0.1, r2 = 0.02 and r3 = 0.009 as given in Aminikhah [69]. Now disperse the Eq. (5.4) at the
collocation points tl =

(l−0.5)
m , where l = 1, 2, 3, ...,m. We obtained 3m nonlinear algebraic equations

which can be solved by Newton iteration method, after solving we obtained the coefficients ci, gi and
ki. Substitute these coefficients into the Eq. (5.3) we get desired solutions Θ1, Θ2 and Θ3.
Example 2: Consider the system of condensations of CO2 and PGE problem of arbitrary order.{

Υα
1 (t) = α1Υ1(t)Υ2(t) − Υα

1 (t)(β1Υ1(t) + β2Υ2(t)), 1 < α ≤ 2,
Υ
β
1(t) = α2Υ1(x)Υ2(x) − Υ

β
2(t)(β1Υ1(t) + β2Υ2(t)), 1 < β ≤ 2,

(5.5)

with boundary conditions Υ1(0) = 0, Υ1(1) = 1
m , and Υ′2(0) = 1

m , Υ2(1) = 1
m where Υα

1 (t) = CDα
t Υ1(t).

Here for simplicity we have taken m = 3 and we will take the value of α1 = 1, α2 = 2, β1 = 1 and
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β2 = 3 as given in Duan et al. [70], AL-jawary ad Radhi [71]. Further, we assume the higher derivative
in terms of Haar wavelet series. {

Υα
1 (t) = CT Hm(t),

Υ
β
1(t) = KT Hm(t),

(5.6)

applying Riemann-Liouville integral operator on the above equation and using boundary conditions,
we obtained

Υ1(t) − Υ′1(0)t = CT QαHm(t), (5.7)

substituting t = 1 into Eq. (5.7) we obtained
Υ1(1) − Υ′1(0) = CT QαHm(1)

Υ′1(0) =
1
3
−CT QαHm(1), (5.8)

and
Υ2(0) = −KT QβHm(1). (5.9)

Therefore,

Υ1(t) = (
1
3
−CT QαHm(1))t + CT QαHm(t), (5.10)

similarly

Υ2(t) =
t
3
− KT QβHm(1) + KT QβHm(t). (5.11)

Substituting the values of Υ1, Υ2 into the Eq. (5.5) and using Eq. (5.6) we obtained

CT Hm(t) = ( t
3 −CT QαHm(1)t + CT QαHm(t))( t

3 − KT QβHm(1) + KT QβHm(t))
−CT Hm(t)(( t

3 −CT QαHm(1)t + CT QαHm(t)) + 3( t
3 − KT QβHm(1)

+KT QβHm(t))).

 (5.12)

KT Hm(t) = 2( t
3 −CT QαHm(1)t + CT QαHm(t))( t

3 − KT QβHm(1) + KT QβHm(t))
−KT Hm(t)(( t

3 −CT QαHm(1)t + CT QαHm(t)) + 3( t
3 − KT QβHm(1)

+KT QβHm(t))).

 (5.13)

Now disperse the Eqs (5.12) and (5.13) at the collocation points tl =
(l−0.5)

m , where l = 0, 1, ...,m − 1.
We obtained a system of nonlinear algebraic equations which can be easily solved by Newton-Iteration
method using mathematical softwares, after solving we obtained the unknowns coefficients ci and ki.
Substituting these coefficients into the Eqs (5.10) and (5.11) we get desired solutions Υ1 and Υ2.

6. Numerical results and discussion

All numerical simulation and graphical results of both examples are depicted through the Figures
1–14 where Figures 1–6 and Figures 7–14 are depicted for examples 1 and 2 respectively. We have
depicted a comparison between numerical obtained solutions using by Haar wavelet and
Adam’s-Bashforth-Moulton predictor-corrector schemes through the Figures 1–3 and these figures are
depicted for the values of m = 64. It is clear from all figures that both obtained solutions by HWM
and ABM are identical. The obtained solutions Θ1, Θ2 and Θ3 are plotted through the Figures 3–6
where the nature of solution Θ1 is of decreasing nature while other solutions Θ2 and Θ3 is of
increasing nature. We plotted the resolutions Figures 7–14 for better understanding the nature of
obtained solution of example 2. We plotted resolutions figures due to non-availability of its exact
solution.

AIMS Mathematics Volume 5, Issue 4, 3201–3222.



3210

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Θ
1
(t

)

HWM for α=1
ABM α=1
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Table 1. Comparison of Θ1, Θ2 with ABM for various values of t and m = 64.

t Θ1(HWM) Θ1(ABM) Θ2(HWM) Θ2(ABM)

0.1 0.9901 0.9893 0.0100 0.0107
0.2 0.9802 0.9794 0.0198 0.0206
0.3 0.9704 0.9697 0.0296 0.0303
0.4 0.9608 0.9600 0.0393 0.0400
0.5 0.9512 0.9505 0.0489 0.0495
0.6 0.9418 0.9410 0.0585 0.0590
0.7 0.9324 0.9317 0.0680 0.0683
0.8 0.9231 0.9224 0.0775 0.0776
0.9 0.9139 0.9132 0.0869 0.0868
1.0 0.9048 0.9041 0.0963 0.0962

Table 2. Comparison of Θ3 with ABM for various values of t and m = 64.

t Θ3(HWM) Θ3(ABM)

0.1 3.0×10−8 4.0×10−8

0.2 2.4×10−7 2.7×10−7

0.3 7.9×10−7 8.6×10−7

0.4 1.8×10−6 1.9×10−6

0.5 3.6×10−6 3.8×10−6

0.6 6.2×10−6 6.4×10−6

0.7 9.8×10−6 1.0×10−5

0.8 1.5×10−5 1.5×10−5

0.9 2.0×10−5 2.0×10−5

1.0 2.8×10−5 2.8×10−5

7. Conclusion

In this work, Haar wavelet operational matrix and Adam Bashforth’s Moulton scheme are
proposed to solve fractional chemical kinetics and another problem that relates the condensations of
carbon dioxide CO2 numerically. A comparative study between fractional chemical kinetics and
another problem that relates the conden sations of carbon dioxide CO2 has been done for m = 64 in
this work. Our tabulated and graphical results indicate that the solution will ameliorate if we will take
more collocation points, i.e greater values of m. The essential advantage of HWM is that it converts
problems into the system of linear or nonlinear algebraic equations so that the computation is facile
and computer-oriented. Furthermore, wavelet method is much easier than other numerical methods
for system of FDEs. Again, we have solved the chemistry problems at different resolutions, which
produced the same results at each resolution. The precision of the solution will ameliorate if we
increase the resolution. This new comparative study between the Haar wavelet operational matrix and
Adam Bashforth’s Moulton scheme for fractional chemical kinetics and another problem that relates
the condensations of carbon dioxide CO2 indicates that both approaches can be applied successfully
to the chemistry problems of chemistry science.
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