In this paper, we solve the existence and uniqueness of a solution for a fractional differential equation by introducing some new fixed point results for rational ($ \alpha $, $ \beta $, $ \psi $)-contractions in the framework of orthogonal $ \mathcal{F} $-metric spaces. We derive some well-known results in literature as consequences of our leading result.
Citation: Mohammed H. Alharbi, Jamshaid Ahmad. Solution of fractional differential equation by fixed point results in orthogonal $ \mathcal{F} $-metric spaces[J]. AIMS Mathematics, 2023, 8(11): 27347-27362. doi: 10.3934/math.20231399
In this paper, we solve the existence and uniqueness of a solution for a fractional differential equation by introducing some new fixed point results for rational ($ \alpha $, $ \beta $, $ \psi $)-contractions in the framework of orthogonal $ \mathcal{F} $-metric spaces. We derive some well-known results in literature as consequences of our leading result.
[1] | M. Bestvina, R-Trees in topology, geometry and group theory, In: Handbook of geometric topology, Amsterdam: North-Holland, 2001, 55–91. https://doi.org/10.1016/B978-0-444-82432-5.X5000-8 |
[2] | C. Semple, M. Steel, Phylogenetics, Oxford: Oxford University Press, 2003. |
[3] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalizedmetric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. https://doi.org/10.5486/PMD.2000.2133 doi: 10.5486/PMD.2000.2133 |
[4] | I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37. |
[5] | S. Czerwik, Contraction mappings in $b$-metric spaces, Acta Mathematica et Informatica Universitatis Ostraviensis, 1 (1993), 5–11. |
[6] | M. E. Gordji, D. Rameani, M. De La Sen, Y. J. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. |
[7] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6 |
[8] | T. Kanwal, A. Hussain, H. Baghani, M. De La Sen, New fixed point theorems in orthogonal $F$-metric spaces with application to fractional differential equation, Symmetry, 12 (2020), 832. https://doi.org/10.3390/sym12050832 doi: 10.3390/sym12050832 |
[9] | S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrales, Fund. Math., 3 (1922), 133–181. |
[10] | B. Samet, C. Vetro, P. Vetro, Fixed point theorems for $\alpha $-$\psi$-contractive type mappings, Nonlinear Anal. Theor., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[11] | M. Ramezani, Orthogonal metric space and convex contractions, Int. J. Nonlinear Anal. Appl., 6 (2015), 127–132. https://doi.org/10.22075/IJNAA.2015.261 doi: 10.22075/IJNAA.2015.261 |
[12] | S. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for $(\alpha, \beta)$-$(\psi, \varphi)$-contractive mappings, Filomat, 28 (2014), 635–647. |
[13] | B. Fisher, Mappings satisfying a rational inequality, Bull. Math. Soc. Sci. Math., 24 (1980), 247–251. |
[14] | A. Hussain, T. Kanwal, Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results, T. A. Razmadze Math. In., 172 (2018), 481–490. https://doi.org/10.1016/j.trmi.2018.08.006 doi: 10.1016/j.trmi.2018.08.006 |
[15] | Z. Ahmadi, R. Lashkaripour, H. A. Baghani, A fixed point problem with constraint inequalities via a contraction in incomplete metric spaces, Filomat, 32 (2018), 3365–3379. https://doi.org/10.2298/FIL1809365A doi: 10.2298/FIL1809365A |
[16] | H. Baghani, M. Ramezani, Coincidence and fixed points for multivalued mappings in incomplete metric spaces with applications, Filomat, 33 (2019), 13–26. https://doi.org/10.2298/FIL1901013B doi: 10.2298/FIL1901013B |
[17] | A. C. M. Ran, M. C. B. Reuring, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., 132 (2004), 1435–1443. |
[18] | M. Gunaseelan, A. J. Gnanaprakasam, N. Kausar, M. Munir, Orthogonal $F$-contraction mapping on $O$-complete metric space with applications, Int. J. Fuzz Log. Inte., 21 (2021), 243–250. https://doi.org/10.5391/IJFIS.2021.21.3.243 doi: 10.5391/IJFIS.2021.21.3.243 |
[19] | H. Faraji, N. Mirkov, Z. D. Mitrović, R. Ramaswamy, O. A. A. Abdelnaby, S. Radenović, Some new results for ($\alpha, \beta $)-admissible mappings in $F$-metric spaces with applications to integral equations, Symmetry, 14 (2022), 2429. https://doi.org/10.3390/sym14112429 doi: 10.3390/sym14112429 |
[20] | A. Das, M. Paunović, V. Parvaneh, M. Mursaleen, Z. Bagheri, Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness, Demonstr. Math., 56 (2023), 20220192. https://doi.org/10.1515/dema-2022-0192 doi: 10.1515/dema-2022-0192 |
[21] | B. Mohammadi, M. Paunović, V. Parvanah, M. Mursaleen, Existence of solution for some $\varphi $-Caputo fractional differential inclusions via Wardowski-Mizoguchi-Takahashi multi-valued contractions, Filomat, 37 (2023), 3777–3789. |
[22] | M. Paunović, B. Mohammadi, V. Parvaneh, On weak wardowski contractions and solvability of $\rho $-caputo implicit fractional pantograph differential equation with generalized anti-periodic boundary conditions, J. Nonlinear Convex A., 23 (2022), 1261–1274. |
[23] | B. C. Deuri, M. Paunović, A. Das, V. Parvaneh, Solution of a fractional integral equation using the Darbo fixed point theorem, J. Math., 2022 (2022), 8415616. https://doi.org/10.1155/2022/8415616 doi: 10.1155/2022/8415616 |
[24] | T. Jin, X. Yang, Monotonicity theorem for the uncertain fractional differential equation and application to uncertain financial market, Math. Comput. Simulat., 190 (2021), 203–221. https://doi.org/10.1016/j.matcom.2021.05.018 doi: 10.1016/j.matcom.2021.05.018 |
[25] | T. Jin, H. Xia, Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type, J. Ambient. Intell. Human. Comput., 14 (2023), 6435–6448. https://doi.org/10.1007/s12652-021-03516-y doi: 10.1007/s12652-021-03516-y |
[26] | M. M. A. Khater, Novel computational simulation of the propagation of pulses in optical fibers regarding the dispersion effect, Int. J. Mod. Phys. B, 37 (2023), 2350083. https://doi.org/10.1142/S0217979223500832 doi: 10.1142/S0217979223500832 |
[27] | M. M. A. Khater, A hybrid analytical and numerical analysis of ultra-short pulse phase shifts, Chaos Soliton. Fract., 169 (2023), 113232. https://doi.org/10.1016/j.chaos.2023.113232 doi: 10.1016/j.chaos.2023.113232 |
[28] | M. M. A. Khater, Characterizing shallow water waves in channels with variable width and depth; computational and numerical simulations, Chaos Soliton. Fract., 173 (2023), 113652. https://doi.org/10.1016/j.chaos.2023.113652 doi: 10.1016/j.chaos.2023.113652 |
[29] | M. M. A. Khater, Nonlinear elastic circular rod with lateral inertia and finite radius: Dynamical attributive of longitudinal oscillation, Int. J. Mod. Phys. B, 37 (2023), 2350052. https://doi.org/10.1142/S0217979223500522 doi: 10.1142/S0217979223500522 |
[30] | Z. Jia, X. Liu, Stability in measure for uncertain fractional differential equations with jumps, U. P. B. Sci. Bull., Series A, 84 (2022), 145–154. |
[31] | Z. Jia, X. Liu, C. Li, Fixed point theorems applied in uncertain fractional differential equation with jump, Symmetry, 12 (2020), 765. https://doi.org/10.3390/sym12050765 doi: 10.3390/sym12050765 |