Research article

On a class of weakly Landsberg metrics composed by a Riemannian metric and a conformal 1-form

  • Received: 14 July 2023 Revised: 06 September 2023 Accepted: 08 September 2023 Published: 26 September 2023
  • MSC : 53B40, 53C60

  • Without the quadratic restriction, there are many non-Riemannian geometric quantities in Finsler geometry. Among these geometric quantities, Berwald curvature, Landsberg curvature and mean Landsberg curvature are related directly to the famous "unicorn problem" in Finsler geometry. In this paper, Finsler metrics with vanishing weakly Landsberg curvature (i.e., weakly Landsberg metrics) are studied. For the general $ (\alpha, \beta) $-metrics, which are composed by a Riemannian metric $ \alpha $ and a 1-form $ \beta $, we found that if the expression of the metric function doesn't depend on the dimension $ n $, then any weakly Landsberg $ (\alpha, \beta) $-metric with a conformal 1-form must be a Landsberg metric. In the two-dimensional case, the weakly Landsberg case is equivalent to the Landsberg case. Further, we classified two-dimensional Berwald general $ (\alpha, \beta) $-metrics with a conformal 1-form.

    Citation: Fangmin Dong, Benling Li. On a class of weakly Landsberg metrics composed by a Riemannian metric and a conformal 1-form[J]. AIMS Mathematics, 2023, 8(11): 27328-27346. doi: 10.3934/math.20231398

    Related Papers:

  • Without the quadratic restriction, there are many non-Riemannian geometric quantities in Finsler geometry. Among these geometric quantities, Berwald curvature, Landsberg curvature and mean Landsberg curvature are related directly to the famous "unicorn problem" in Finsler geometry. In this paper, Finsler metrics with vanishing weakly Landsberg curvature (i.e., weakly Landsberg metrics) are studied. For the general $ (\alpha, \beta) $-metrics, which are composed by a Riemannian metric $ \alpha $ and a 1-form $ \beta $, we found that if the expression of the metric function doesn't depend on the dimension $ n $, then any weakly Landsberg $ (\alpha, \beta) $-metric with a conformal 1-form must be a Landsberg metric. In the two-dimensional case, the weakly Landsberg case is equivalent to the Landsberg case. Further, we classified two-dimensional Berwald general $ (\alpha, \beta) $-metrics with a conformal 1-form.



    加载中


    [1] T. Aikou, Some remarks on the geometry of tangent bundle of Finsler manifolds, Tensor, 52 (1993), 234–242.
    [2] G. S. Asanov, Finsleroid-Finsler space with Berwald and Landsberg conditions, Rep. Math. Phys., 58 (2006), 275–300. https://doi.org/10.1016/S0034-4877(06)80053-4 doi: 10.1016/S0034-4877(06)80053-4
    [3] D. Bao, S. S. Chern, A note on the Gauss-Bonnet theorem for Finsler spaces, Ann. Math., 143 (1996), 233–252. https://doi.org/10.2307/2118643 doi: 10.2307/2118643
    [4] D. Bao, S. S. Chern, Z. Shen, An introduction to Riemann-Finsler geometry, New York: Springer, 2000. https://doi.org/10.1007/978-1-4612-1268-3
    [5] S. Bácsó, M. Matsumoto, Reduction theorems of certain Landsberg spaces to Berwald spaces, Publ. Math. Debrecen, 48 (1996), 357–366.
    [6] D. Bao, Z. Shen, On the volume of unit tangent spheres in a Finsler space, Results Math., 26 (1994), 1–17. https://doi.org/10.1007/BF03322283 doi: 10.1007/BF03322283
    [7] M. Crampin, On Landsberg spaces and the Landsberg-Berwald problem, Houston J. Math., 37 (2011), 1103–1124.
    [8] L. Huang, X. Mo, On some explicit constructions of dually flat Finsler metrics, J. Math. Anal. Appl., 405 (2013), 565–573. https://doi.org/10.1016/j.jmaa.2013.04.028 doi: 10.1016/j.jmaa.2013.04.028
    [9] B. Li, Z. Shen, On a class of weakly Landsberg metrics, Sci. China Ser. A, 50 (2007), 573–589. https://doi.org/10.1007/s11425-007-0021-8 doi: 10.1007/s11425-007-0021-8
    [10] M. Matsumoto, Remarks on Berwald and Landsberg spaces, Contemp. Math., 1996.
    [11] V. S. Matveev, On "All regular Landsberg metrics are always Berwald" by Z. I. Szabó, Balkan J. Geom. Appl., 14 (2008), 50–52.
    [12] X. Mo, L. Zhou, The curvatures of spherically symmetric Finsler metrics in $R^n$, 2012, arXiv: 1202.4543. https://doi.org/10.48550/arXiv.1202.4543
    [13] G. Randers, On an asymmetric metric in the four-space of general relativity, Phys. Rev., 59 (1941), 195. https://doi.org/10.1103/PhysRev.59.195 doi: 10.1103/PhysRev.59.195
    [14] Z. Shen, Differential geometry of Spray and Finsler spaces, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-015-9727-2
    [15] Z. Shen, Finsler manifolds with nonpositive flag curvature and constant S-curvature, Math. Z., 249 (2005), 625–639. https://doi.org/10.1007/s00209-004-0725-1 doi: 10.1007/s00209-004-0725-1
    [16] Z. Shen, On a class of Landsberg metrics in Finsler geometry, Can. J. Math., 61 (2009), 1357–1374. https://doi.org/10.4153/CJM-2009-064-9 doi: 10.4153/CJM-2009-064-9
    [17] Z. Shen, H. Xing, On randers metrics with isotropic S-curvature, Acta. Math. Sin.-English Ser., 24 (2008), 789–796. https://doi.org/10.1007/s10114-007-5194-0 doi: 10.1007/s10114-007-5194-0
    [18] Z. I. Szabó, Positive definite Berwald spaces. Structure theorem on Berwald spaces, Tensor (NS), 35 (1981), 25–39.
    [19] Z. I. Szabó, All regular Landsberg metrics are Berwald, Ann. Glob. Anal. Geom., 34 (2008), 381–386. https://doi.org/10.1007/s10455-008-9115-y doi: 10.1007/s10455-008-9115-y
    [20] Z. I. Szabó, Correction to "All regular Landsberg metrics are Berwald", Ann. Glob. Anal. Geom., 35 (2009), 227–230. https://doi.org/10.1007/s10455-008-9131-y doi: 10.1007/s10455-008-9131-y
    [21] M. Xu, V. S. Matveev, Proof of Laugwitz Conjecture and Landsberg Unicorn Conjecture for Minkowski norms with $SO(k)\times SO(n-k)$-symmetry, Can. J. Math., 74 (2022), 1486–1516. https://doi.org/10.4153/S0008414X21000304 doi: 10.4153/S0008414X21000304
    [22] C. Yu, H. Zhu, On a new class of Finsler metrics, Differ. Geom. Appl., 29 (2011), 244–254. https://doi.org/10.1016/j.difgeo.2010.12.009 doi: 10.1016/j.difgeo.2010.12.009
    [23] L. Zhou, Projective spherically symmetric Finsler metrics with constant flag curvature in $R^n$, Geom. Dedicata, 158 (2012), 353–364. https://doi.org/10.1007/s10711-011-9639-3 doi: 10.1007/s10711-011-9639-3
    [24] L. Zhou, The Finsler surface with $K = 0$ and $J = 0$, Differ. Geom. Appl., 35 (2014), 370–380. https://doi.org/10.1016/j.difgeo.2014.02.003 doi: 10.1016/j.difgeo.2014.02.003
    [25] S. Zhou, B. Li, On Landsberg general ($\alpha$, $\beta$)-metrics with a conformal 1-form, Differ. Geom. Appl., 59 (2018), 46–65. https://doi.org/10.1016/j.difgeo.2018.04.001 doi: 10.1016/j.difgeo.2018.04.001
    [26] M. Zohrehvand, H. Maleki, On general $(\alpha, \beta)$-metrics of Landsberg type, Int. J. Geom. Methods M., 13 (2016), 1650085. https://doi.org/10.1142/S0219887816500857 doi: 10.1142/S0219887816500857
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(654) PDF downloads(41) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog