Jleli and Samet introduced the notion of $ \mathcal{F} $-metric space as a generalization of traditional metric space and proved Banach contraction principle in the setting of these generalized metric spaces. The aim of this article is to utilize $ \mathcal{F} $-metric space and establish some common $ \alpha $-fuzzy fixed point theorems for rational ($ \beta $-$ \phi) $-contractive conditions. Our results extend, generalize and unify some well-known results in the literature. As application of our main result, we discuss the solution of fuzzy integrodifferential equations in the setting of a generalized Hukuhara derivative.
Citation: Amer Hassan Albargi, Jamshaid Ahmad. Fixed point results of fuzzy mappings with applications[J]. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586
Jleli and Samet introduced the notion of $ \mathcal{F} $-metric space as a generalization of traditional metric space and proved Banach contraction principle in the setting of these generalized metric spaces. The aim of this article is to utilize $ \mathcal{F} $-metric space and establish some common $ \alpha $-fuzzy fixed point theorems for rational ($ \beta $-$ \phi) $-contractive conditions. Our results extend, generalize and unify some well-known results in the literature. As application of our main result, we discuss the solution of fuzzy integrodifferential equations in the setting of a generalized Hukuhara derivative.
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrals, Fund. Math., 3 (1922), 133–181. |
[2] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X |
[3] | S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4 |
[4] | V. D. Estruch, A. Vidal, A note on fixed fuzzy points for fuzzy mappings, Rend. Istit. Mat. Univ. Trieste, 32 (2001), 39–45. |
[5] | B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001 |
[6] | Y. Chalco-Cano, H. Roman-Flores, Some remarks on fuzzy differential equations via differential inclusions, Fuzzy Sets Syst., 230 (2013), 3–20. https://doi.org/10.1016/j.fss.2013.04.017 doi: 10.1016/j.fss.2013.04.017 |
[7] | O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7 |
[8] | S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst., 24 (1987), 319–330. https://doi.org/10.1016/0165-0114(87)90030-3 doi: 10.1016/0165-0114(87)90030-3 |
[9] | P. V. Subrahmanyam, S. K. Sudarsanam, A note on fuzzy Volterra integral equations, Fuzzy Sets Syst., 81 (1996), 237–240. https://doi.org/10.1016/0165-0114(95)00180-8 doi: 10.1016/0165-0114(95)00180-8 |
[10] | E. J. Villamizar-Roa, V. Angulo-Castillo, Y. Chalco-Cano, Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles, Fuzzy Sets Syst., 265 (2015), 24–38. https://doi.org/10.1016/j.fss.2014.07.015 doi: 10.1016/j.fss.2014.07.015 |
[11] | M. Hukuhara, Integration des applications mesurables dont la Valeur est un compact convexe, Funkc. Ekvacioj, 10 (1967), 205–223. |
[12] | M. L. Puri, D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409–422. https://doi.org/10.1016/0022-247X(86)90093-4 doi: 10.1016/0022-247X(86)90093-4 |
[13] | P. Diamond, P. Kloeden, Metric spaces of fuzzy sets: theory and applications, World Scientific, 1994. https://doi.org/10.1142/2326 |
[14] | A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comput. Model., 49 (2009), 1331–1336. https://doi.org/10.1016/j.mcm.2008.11.011 doi: 10.1016/j.mcm.2008.11.011 |
[15] | M. Rashid, A. Azam, N. Mehmood, $L$-fuzzy fixed points theorems for $L$-fuzzy mappings via $\beta _{F_{L}}$-admissible pair, Sci. World J., 2014 (2014), 1–8. https://doi.org/10.1155/2014/853032 doi: 10.1155/2014/853032 |
[16] | M. Rashid, M. A. Kutbi, A. Azam, Coincidence theorems via alpha cuts of $L$-fuzzy sets with applications, Fixed Point Theory Appl., 2014 (2014), 1–16. https://doi.org/10.1186/1687-1812-2014-212 doi: 10.1186/1687-1812-2014-212 |
[17] | M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6 |
[18] | L. A. Alnaser, J. Ahmad, D. Lateef, H. A. Fouad, New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 1–11. https://doi.org/10.3390/sym11050602 doi: 10.3390/sym11050602 |
[19] | S. A. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $\mathcal{F}$ -metric spaces with applications, Mathematics, 8 (2020), 1–14. https://doi.org/10.3390/math8040584 doi: 10.3390/math8040584 |
[20] | M. Alansari, S. S. Mohammed, A. Azam, Fuzzy fixed point results in $\mathcal{F}$-metric spaces with applications, J. Funct. Spaces, 2020 (2020), 1–11. https://doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815 |
[21] | B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha $-$\psi $-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014 |
[22] | V. Berinde, Contractii generalizate si aplicatii, Baie Mare, Romania: Cub Press, 1997. |
[23] | I. A. Rus, Generalized contractions and applications, Cluj-Napoca, Romania: Cluj University Press, 2001. |