Research article

Fixed point results of fuzzy mappings with applications

  • Received: 28 December 2022 Revised: 17 February 2023 Accepted: 08 March 2023 Published: 15 March 2023
  • MSC : 46S40, 54H25, 47H10

  • Jleli and Samet introduced the notion of $ \mathcal{F} $-metric space as a generalization of traditional metric space and proved Banach contraction principle in the setting of these generalized metric spaces. The aim of this article is to utilize $ \mathcal{F} $-metric space and establish some common $ \alpha $-fuzzy fixed point theorems for rational ($ \beta $-$ \phi) $-contractive conditions. Our results extend, generalize and unify some well-known results in the literature. As application of our main result, we discuss the solution of fuzzy integrodifferential equations in the setting of a generalized Hukuhara derivative.

    Citation: Amer Hassan Albargi, Jamshaid Ahmad. Fixed point results of fuzzy mappings with applications[J]. AIMS Mathematics, 2023, 8(5): 11572-11588. doi: 10.3934/math.2023586

    Related Papers:

  • Jleli and Samet introduced the notion of $ \mathcal{F} $-metric space as a generalization of traditional metric space and proved Banach contraction principle in the setting of these generalized metric spaces. The aim of this article is to utilize $ \mathcal{F} $-metric space and establish some common $ \alpha $-fuzzy fixed point theorems for rational ($ \beta $-$ \phi) $-contractive conditions. Our results extend, generalize and unify some well-known results in the literature. As application of our main result, we discuss the solution of fuzzy integrodifferential equations in the setting of a generalized Hukuhara derivative.



    加载中


    [1] S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations integrals, Fund. Math., 3 (1922), 133–181.
    [2] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [3] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4
    [4] V. D. Estruch, A. Vidal, A note on fixed fuzzy points for fuzzy mappings, Rend. Istit. Mat. Univ. Trieste, 32 (2001), 39–45.
    [5] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [6] Y. Chalco-Cano, H. Roman-Flores, Some remarks on fuzzy differential equations via differential inclusions, Fuzzy Sets Syst., 230 (2013), 3–20. https://doi.org/10.1016/j.fss.2013.04.017 doi: 10.1016/j.fss.2013.04.017
    [7] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [8] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets Syst., 24 (1987), 319–330. https://doi.org/10.1016/0165-0114(87)90030-3 doi: 10.1016/0165-0114(87)90030-3
    [9] P. V. Subrahmanyam, S. K. Sudarsanam, A note on fuzzy Volterra integral equations, Fuzzy Sets Syst., 81 (1996), 237–240. https://doi.org/10.1016/0165-0114(95)00180-8 doi: 10.1016/0165-0114(95)00180-8
    [10] E. J. Villamizar-Roa, V. Angulo-Castillo, Y. Chalco-Cano, Existence of solutions to fuzzy differential equations with generalized Hukuhara derivative via contractive-like mapping principles, Fuzzy Sets Syst., 265 (2015), 24–38. https://doi.org/10.1016/j.fss.2014.07.015 doi: 10.1016/j.fss.2014.07.015
    [11] M. Hukuhara, Integration des applications mesurables dont la Valeur est un compact convexe, Funkc. Ekvacioj, 10 (1967), 205–223.
    [12] M. L. Puri, D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl., 114 (1986), 409–422. https://doi.org/10.1016/0022-247X(86)90093-4 doi: 10.1016/0022-247X(86)90093-4
    [13] P. Diamond, P. Kloeden, Metric spaces of fuzzy sets: theory and applications, World Scientific, 1994. https://doi.org/10.1142/2326
    [14] A. Azam, I. Beg, Common fixed points of fuzzy maps, Math. Comput. Model., 49 (2009), 1331–1336. https://doi.org/10.1016/j.mcm.2008.11.011 doi: 10.1016/j.mcm.2008.11.011
    [15] M. Rashid, A. Azam, N. Mehmood, $L$-fuzzy fixed points theorems for $L$-fuzzy mappings via $\beta _{F_{L}}$-admissible pair, Sci. World J., 2014 (2014), 1–8. https://doi.org/10.1155/2014/853032 doi: 10.1155/2014/853032
    [16] M. Rashid, M. A. Kutbi, A. Azam, Coincidence theorems via alpha cuts of $L$-fuzzy sets with applications, Fixed Point Theory Appl., 2014 (2014), 1–16. https://doi.org/10.1186/1687-1812-2014-212 doi: 10.1186/1687-1812-2014-212
    [17] M. Jleli, B. Samet, On a new generalization of metric spaces, J. Fixed Point Theory Appl., 20 (2018), 128. https://doi.org/10.1007/s11784-018-0606-6 doi: 10.1007/s11784-018-0606-6
    [18] L. A. Alnaser, J. Ahmad, D. Lateef, H. A. Fouad, New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 1–11. https://doi.org/10.3390/sym11050602 doi: 10.3390/sym11050602
    [19] S. A. Al-Mezel, J. Ahmad, G. Marino, Fixed point theorems for generalized ($\alpha \beta $-$\psi $)-contractions in $\mathcal{F}$ -metric spaces with applications, Mathematics, 8 (2020), 1–14. https://doi.org/10.3390/math8040584 doi: 10.3390/math8040584
    [20] M. Alansari, S. S. Mohammed, A. Azam, Fuzzy fixed point results in $\mathcal{F}$-metric spaces with applications, J. Funct. Spaces, 2020 (2020), 1–11. https://doi.org/10.1155/2020/5142815 doi: 10.1155/2020/5142815
    [21] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for $\alpha $-$\psi $-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1016/j.na.2011.10.014 doi: 10.1016/j.na.2011.10.014
    [22] V. Berinde, Contractii generalizate si aplicatii, Baie Mare, Romania: Cub Press, 1997.
    [23] I. A. Rus, Generalized contractions and applications, Cluj-Napoca, Romania: Cluj University Press, 2001.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1100) PDF downloads(57) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog