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1. Introduction

Fixed point theory is considered to be the most fascinating and vital field of research in the growth
of nonlinear analysis. In this extent, Banach fixed point theorem [1] is pioneer result for investigators
in last few decades. This theorem plays a significant and essential role in solving the existence and
uniqueness of solution to different problems in mathematics, physics, engineering, medicines, and
social sciences which guides to mathematical models design by system of nonlinear integral equations,
functional equations, and differential equations. In 1960, Zadeh [2] presented the theory of fuzzy
set to handle the capricious which generated the imprecision or non-recognition in the first choice to
negligence. Heilpern [3] gave the notion of fuzzy mappings and established fixed point theorems in
metric linear space. Estruch et al. [4] obtained fuzzy fixed point results for fuzzy mappings in the
background of complete metric space. Subsequently, many researchers extended and generalized the
result of Estruch et al. [4] in different generalized metric spaces with different contractions.

Fuzzy differential equations and fuzzy integral equations play a significant role in modeling
dynamic systems in which doubts or ambiguities conceptss flourish. These concepts have been


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2023586

11573

built up in specific theoretical directions, and countless use in constructive applications have been
examined. Many foundations for analyzing fuzzy differential equations are given. The fundamental
and the utmost charming accession is employing the Hukuhara differntiability (H-differentiability)
for fuzzy valued functions (see [5, 6]). Later on, Kaleva [7] investigated the solution of Fuzzy
differential equations. Seikkala [8] solved an initial value problem by considering fuzzy initial value
and deterministic or fuzzy function. The investigations regarding the existence and uniqueness of
solutions of fuzzy differential and integral equations, large number of redears have used definite fixed
point theorems. Although, Subrahmanyam et al. [9] discussed the solutions of integral equations
respecting fuzzy multivalued mappings by adopting the well-known Banach contraction principle.
Illamizar-Roa et al. [10] discussed the existence and uniqueness of solution of fuzzy initial value
problem in the backgroun of a generalized Hukuhara derivatives. These fuzzy differential and integral
equations are applied in digital images, specially to restore or separates the images into segments. The
researchers can see [11-16] for more details in this direction.

On the other hand, Jleli et al. [17] introduced a new metric space named as ¥ -metric space to
generalize the classical metric space in 2018. Later on, Alnaser et al. [18] utilized ¥ -metric space and
investigated some fixed point theorems for rational contraction. Al-Mezel et al. [19] introduced (af, ¢)-
contractions in ¥ -metric space and obtained some generalized results. Recently, Alansari et al. [20]
studied some common fuzzy fixed point results in this ¥ -metric space.

In this paper, we establish some common a-fuzzy fixed point theorems for rational (5-¢)-contractive
conditions in the setting of ¥ -metric space to generalize certain results of literature. We also supply a
nontrivial example to support our leading result. As an application, we discuss the solution of fuzzy
integrodifferential equations in the setting of the generalized Hukuhara derivative which are used in
digital images to the better reconstruction in less time.

2. Preliminaries

Definition 2.1. [2, 3] Let W # 0. A fuzzy set in ‘W is a function with ‘W as domain and [0, 1] as
co-domain. If 2, is a fuzzy set and k € ‘W, then Z,(k) is professed to be the grade of membership of k
in Ey. An « -level set of E, is represented by [E,], and is defined in this way:

[E1]e = {k : Bi(6) 2 @} ifa € (0, 1],

[Ei]o = {x : Ei(x) > 0},

where 2, is the closure of the set 5. If W is a metric space, then I'VV is the collection of all fuzzy sets
inW. For2,,2, € IV, | ¢ Z, means Z,(k) < Z,(x) for all k € W. We symbolize the fuzzy set X
by {k} before it is expressed, where y\ is the characteristic function of the crisp set Z,. Let W, be an
arbitrary set, W, be a metric space. A mapping O is called fuzzy mapping if O is a mapping from ‘W,
into I"?. A fuzzy mapping O is a fuzzy subset on ‘W, x W, with membership function O(k)(w). The
Sunction O(k)(w) is the grade of membership of w in O(k).

Definition 2.2. [14] Let O,,0, : W — I, A point k € W is called a common a-fuzzy fixed point of
O, and O, if there exists a € [0, 1] such that k € [Ok], N [Ozk], -

In 2018, Jleli and Samet [17] introduced a fascinating metric space named as ¥ -metric space
as follows:
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Let f : (0,+00) = R and ¥ denotes the set of functions f satisfying:

(F1) 0 < k < timplies f(x) < f(),
(F>) For {«,} € R*, lim,_, k, = 0 if and only if lim,_,, f(k,) = —c0.

Definition 2.3. [17] Let W # 0, and let dr : W X W — [0,+00). Assume that there exists
(f,h) € F x [0, +o0) such that

(Dy) (x,w) € WXW, dr(k,w) = 0if and only if k = w,
(D,) d#(k, w) = de(w, k), for all (k, w) € W X W,
(D3) For every (k,w) € W X W, for every N € N, N > 2, and for every (ui)ﬁl c W, with (uy,uy) =

(k, w), we have
N-1

dr(k,) > 0 = f(dr(k,0)) < f dy (ki ki) +

i=1

Then dg is called a F-metric on W and (W, dy) is called an F -metric space.
Example 2.1. [17] The function d# : R X R — [0, +00)

(k — w)? if (k, w) € [0, 3] x [0, 3],

dy—'(K, (,()) = { |K _ U-)l if (K, C()) ¢ [0, 3] X [O, 3],

with f(#) = In(r) and h = In(3), is a ¥ -metric.

Definition 2.4. [17] Let (‘W,ds) be a F -metric space.
(i) Let {«,} € W. The sequence {k,} is said to be F -convergent to k € W if {k,} is convergent to k
with respect to the F -metric dg.
(ii) The sequence {k,} is said to be ¥ -Cauchy, if and only if
lim d#(k,, k) = 0.

n,m— oo

(iii) If every F -Cauchy sequence in ¥ -metric space (W, dy) is F -convergent to an element of ‘W,
then (W, dyg) is F -complete.

Theorem 2.1. [17] Let (W, ds) be a F -metric space and O : W — W. Assume that these assertions
hold:

(i) (W,ds) is F -complete,

(ii) There exists A € (0, 1) such that

d7(0(k), O(w)) < Adg(k, w).

Then there exists k* € W such that Ok* = k*. Furthermore, for any ky € ‘W, the sequence {k,} C ‘W
defined by
Kp+1 = O(k,), n €N,

is F -convergent to k.
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Definition 2.5. [19,20] Let (W, dy) be a F -metric space, C(2™) be the set of all nonempty compact
subsets of W and 2,2, € C2W). Then,

ds(k, Ey) = inf {dy(k, w) : w € Eq},

d(}‘(E], =) = inf {d{}‘(K, W) KEZ,WEE}.

A Hausdorff metric Hy on C(2W) induced by F -metric dy is given as

Hy (2.5 max {SUPKE=. dg (K, E3), SUpP ez, dr (W, El)} , If it exists,
2, 20) = - - .
4 00, otherwise.

In 2012, Samet et al. [21] began the notions of S-admissible mapping in this way.

Definition 2.6. [21]Let O : W — Wand a : W X W — [0, +o0). Then O is called a B-admissible
mapping if

KweW, Bkw>1 = PBOkOw)=> 1.
Definition 2.7. [22, 23] A nondecreasing function ¢ : [0,+00) — [0, +00) is called a comparison
Junction, if ¢"(t)uenw — 0asn — oo, for all t € (0, +00), where ¢" represents the nth iterate of ¢.

We represent the set of these comparison functions by ‘P.

Lemma 2.1. [22,23] If ¢ € VY, then these conditions hold:
(i) Each iterate ¢' of ¢, for i > 1 is a comparison function;
(ii) ¢(t) < t, forall t > 0,

(iii) ¢ is continuous at 0.

Lemma 2.2. [20] Let ‘W, and ‘W, be nonempty closed and compact subsets of a F -metric space
(W, dg). If k € W, then de(k, W>) < Hy (W, W>).

3. Main results

Motivated with the notion of S-admissible mapping, we define the concept of Bs-admissible
mapping in ¥ -metric space as follows:

Definition 3.1. Let (‘W,ds) be a F -metric space, B : W X W — [0,+c0) and let Oy,0, be fuzzy
mapping from W into F(W). The pair (O,,0,) is called Bs-admissible if these assertions hold:

(i) For eachk € W and w € [OIK]QOI(K) , where o, (k) € (0, 1], with B(k, w) > 1, we have B(w, z) > 1
forall z € [Ozw]aoz(w) # 0, where ap,(w) € (0, 1],

(ii) For eachk € W and w € [O2K]QOZ(K) , Where ap, (k) € (0, 1], with B(k, w) > 1, we have B(w, z) > 1
forall z € [Olw]aol(w) # 0, where ap,(w) € (0, 1].

Theorem 3.1. Let (‘W,dy) be a F-metric space, B : W X W — [0,) and let 0,0, : W — v
be fuzzy mappings. Assume that for each k € W, there exist agp,(k),@o,(k) € (0,1] such that
[OIK]O@1 ® > [OzK]aoz w €C (2W). Assume that these assertions also hold:

(i) (W, dy) be an F -complete,

(ii) For kg € ‘W, there exists ap, (ko) or ap,(ko) € (0,1] such that k, € [01K0]ao,(Ko) or kK; €
[O20] a0, () With Blko, k1) > 1,

(iii) There exists ¢ € Y such that
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max {B(K’ CL)),ﬁ(U), K)} HT ([OIK](}’OI (x) » [020)](1/02((0))
[ [ d?t(K’ (,()), d(f'_(K’ [OlK]aol (K))’ d"f'_(w’ [026‘)](102((‘)))’ ]]
< ¢|max

dg (k[0 K]u/ol (K))dyf(w,[ozw]aoz )
1+dg(k,w)

(3.1)

forall k,w € W,

(iii) (01, O,) is Br-admissible,

(iv) If {«,} is a sequence in ‘W such that B(k,, k,+1) = 1 and k, — k as n — oo, then B(k,, k) > 1, for
all n.

Then there exists some k* € [O1k*], 0,6 N [O2k*],, 0,6 -

Proof. For ky € ‘W, there exists ag, (ko) € (0, 1] such that [OIKO]QOI(KO) e C(2™). Since [Olko]aol(,(o)
is a nonempty compact subset of ‘W, so there exists k; € [OIKO]QOI(KO) such that dg(kg, k1) =
dg(ko, [OlKo]aol(KO)). Now for «;, there exists ap,(k;) € (0,1] such that [Ozkl]aoz(,q) e CQW).
SiIlCC[OzKl]aOZ(Kl) is a nonempty compact subset of W, so there exists x, € [Ozkl]aoz(,q) such that
de(k1, kp) = dF(ky, [OzKl]aoz(Kl)). By hypothesis (i1), Lemma 2.2 and inequality 3.1, we have

dy (K1, Kk2) dy (Kl, [OZKI]QOZ(Kl)) < Hf ([OIKO]QO] (ko) > [OzKl]aoz(Kl))
B(ko, k1) Hy ([OlKo]aol (ko) » [02K1]a02(,q))
max {B(ko, k1), B(K1, Ko)} HF ([01K0]aol(;<0) , [02K1]a02(;q))

[ [ dy (ko, k1) , dg (Ko, [O1k0la,, <K0>) ,dg (Kl, [OZKI]QOZ(K1)> , ]]
¢ | max

IA

IA

IA

d¢(/(0,[()] K()],]O1 (ko) d| k1,[021 ]"‘02 (k1)
1+d#(ko.k1)

IA

d , K1) d )
¢ (max (dq—‘ (Ko, k1) » dy (Ko, k1) » di (K1, K2) 5 — (lKi /;2 (,:) (:11) Kz)))

¢ (max (dg (ko, k1) , dy (Ko, K1) , dg (K1, K2) , dF (K1, K2)))
= ¢ (max (dy (ko, k1) , dg (K1, K2))) - (3.2)

IA

If max (d# (ko, k1) , d7 (k1,k2)) = dg (k1, k2) , then (3.2) becomes

dy(k1,k2) < ¢ (dy (K1, K2)) < dy (K1, K2) ,

which is a contradiction. It follows that max (d (ko, k1) , d7 (k1, k2)) = d# (Ko, k1) . Therefore, we have

dg(k1, k2) < ¢ (dy (Ko, k1)) - (3.3)

Now for x, € W, there exists @p,(k2) € (0, 1] such that [01K2]001(K2) e C2"Y). Since [Olkz]aol(,(z)
is a nonempty compact subset of W, so there exists k3 € [01/(2](101(,(2) such that dz(k»,k3) =
dg(k7, [Ole]aol ). As B(ko, k1) > 1 and the pair (O, 0») is B#-admissible, so B(k;, k») > 1. Again by
hypothesis (i1), Lemma 2.2 and inequality 3.1, we have
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dy (Kz, (014214, (Kz)) < Hy ([Ozkllaoz(m :[O1k2]4,, (Kz))
Hy ([Olkz]ao, (2) 2 [OzKl]aoz(m))
Bk, k1) Hy ([Ole]aol () » [OZKI]QOZ(M))
max {B(kz, 1), Bk, 2)) He ([01K21a, ) » [O2K1 Ty 1)
[ [ dg (K2, K1) , dF (Kz, [O1K214,, (Kz)) ,dF (Kl, [02K1]a02(,<1)) ) ]]
¢ | max

dy (K2, K3)

IA

IA

IA

dT(KZa[OI’Q]aO] (ko) Jd7 | x1,[O02k1 ]u/oz 1)

1+d7:(K2,K1)

IA

d , k3) d )
¢(max(a’7c(/<2,/<1),dgc(Kz,Kg),dgc(m,Kz), ¢(1Ki/;i(2(:ll)m)))

¢ (max (dg (k1,k2) , dy (ka, K3) , dg (K1, K2) , dF (K2, K3)))
= ¢ (max (dy (k1,k2) , dy (K2, K3))) - (3.4)

IA

If max (d# (k1, k2) , dF (K2, k3)) = dg (k2, k3) , then (3.4) becomes

dg (K2, k3) < ¢ (dy (K2, k3)) < dy (K2, K3),

which is a contradiction. It follows that max (d¢ (k1, k2) , d7 (k2, k3)) = d# (k1, k>) . Therefore, we have

dy (K, k3) < ¢ (dy (k1,k2)) - (3.5

Pursuing in this way by induction, we can construct a sequence {k,} in ‘W such that «,;; €
[Olen]ao1 (kon) » Kon+2 € [02K2n+1]a02(/<2n+1) and B(ky-1,kn) > 1,

dr(Kon+1, Kone2) < G(dg(Kon, Kops1)) (3.6)

and
dy(Kans2, Kope3) < P(dg(Kops1, Kons2)) 3.7)

for all n. It follows from (3.6) and (3.7), we get

d (K, Kn1) < PAF(Kn-1, K0)) < - - - < ¢"(dy (Ko, k1)). (3.8)

Let € > 0 be a given positive number and (f, h) € ¥ X [0, +00) be such that (D3) holds. By (#3), there
exists 7 > 0 such that
O<t<n= f(t) < f(e) — h. (3.9

Let n(e) € N such that 3., #"(d#(ko, k1)) < 1. Hence by (3.9) and (%), we have

m—1
f(z ¢"<d¢<xo,xl>) < f[ D ¢"drko, m] < f(&)—h.

n>n(e)

Now for m > n > n(e), we have
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IA

m—1
S (dF(Kns ki) f Z de(k;, Ki+1)) +h

IA
~

m—1
D 8" (dr (o, k4 )] +h

IA

S Z ¢"(d¢(/<0,/<1)] +h

n>n(e)

f(e.

It follows by (77) that d#(k,, k) < €, m > n > n(e). It shows that {«,} is ¥ -Cauchy. As (W,ds) is
¥ -complete, so there exists k* € ‘W such that {«,} is ¥ -convergent to «*, i.e.,

IA

lim dg(k,, ) = 0. (3.10)

Now we prove that k* € [Olk*]aol(,(*) , SO we assume that d# (K*, [Olk*]aol(,(*)) > 0. By condition (iv),
we have B(ky,_1,k") > 1, for all n € N.
Thus by the definition of f and (D3), we get

£ (dr (K, 101K g, )

< f(df(K*, Kzn) + d'}' (K2n’ [OIK*](ZOI(K*))) +h
S f(df(K*’ K2n) + HT ([Ozkzn_l](IOZ(Kanl) ’ [OIK*](IOI (K*))) + h
< f( dr (K", Kan) + B(Kop-1, K" )Hy ([02K2n—1]002(l<2n7|) ; [OIK*]wol<K*>) ) +h
< f( d{}'(K*, KZn) + max {ﬁ(KZn—l 3 K*)’B(K*a KZV!—])} HT ([02K2n_1]‘¥02(K2n—1) ’ [O] K*]aol (K*)) ) + h
= f( d{}'(K*, KZn) + max {,B(Kzn_l, K*),ﬂ(K*, Kzn_l)} HT ([O]K*](ZOI(K*) ’ [OZKZn—l]aOZ(Kzn—l)) ) +h

dy (K", Kop—1), dg (K*, [OIK*]QOI(K*)) >
< f| dr(K", k) + ¢ | max dy (Kz"—l’ [O2k2n-11a0, (01)) - +h

dg|k*,[04 K*]QO1 (K*>)d¢(l<2;1—1 [O02k20-1 ]noz <K2,H>)

1+dg(k* Kkon—1)
dT(K*’ K2n)
<t dr (K", Kon-1), dg (K*a [Olk*]wol(K*))’ + h. (3.11)
+¢ max dg:(K*,[O]K*](YOI(K*) A (Kon—1,K2n)
dy (Kop-1,Kan) 5 T+dy (K Kon—1)

Now, we analyze (3.11) under the following cases:
d‘f'(K*’ K2n—1)’ d(]: (K*’ [OIK*]QOI(K*)) s

d dT(K*s[Olk*]aol («*) Jd (Kon-1:K2n)
F (Kan—1, K21 » 1+dg(K* Kkon-1)

Case 1. If max{ ] = d# (K", kp,_1). Then (3.11) becomes

F(dr (K, 101K Tag, 1)) < F (dr (6 K20) + ¢ (dr (K k2 1)) +
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Now since {k,} is F -convergent to «*, so by (#>) and the properties of ¢ € ¥ and taking the limit as
n — oo, we have

lim f (d (K, [O16 Lo, ) = Hm f (A (K, 20) + dr (6 k-1)) + h = =00,

which is a contradiction.
dr (K kau-1) d (K, [O16 T )

p df(k*,[Olk*]aol (x*))dT(Kzn—l K2n)
F (K2n—la KZn) ’ 1+dgF(K* Kk2p-1)

Case 2. If max = dr (K", [01K ]ag, ) - Then (3.11)

becomes
£ (dr (K. 101K Tug ) < f (dr (K" K2n) + & (di (K. 101K g ) +

Taking the limit as n — oo and using the continuity of f, we have

£ (dr (K. 1016 Tog 1)) < £ (¢ (dr (€. 101K ug (c))) + . (3.12)
For h = 0, from (3.12) by (¥7), we have

ds (K*, [O1K 1y, (ﬁ)) <¢ (d‘i-‘ (K*, [O1K 1y, (K*))) ,
which is a contradiction to the fact that ¢ € ¥ and ¢(¢) < ¢, for all # > 0. Hence d# (K*, [0:«],, " (K*)) =0,
that iS, K>‘< € [O]K*](IOI(K*) .
df(K*’ K2n—1)’ d‘f (K*’ [OIK*]QOI (K*)) 5

p (.01 gy ) -1 .420)
‘7: (K2n—1 b K2n) 2 1+d75(K*,K2n,1)

Case 3. If max( ] = dg (k2y_1,K2,) . Then (3.11) becomes
F(dr (K, 101K g ) < f (i (K", Kan) + b (i (Kan-1, K2n))) + .

Now since {«,} is ¥ -convergent to «*, so by (¥,) and the properties of ¢ € ¥ and taking the limit as
n — oo, we have

lim f (dr (K, 101K Lug ) = M f (A7 (K", k) + - (k201 K2)) + = =0,

which is a contradiction. Hence d# (K*, [OIK*]QO] (K*)) = 0, that is, k" € [O1«*], 0,6 -
dy (K", Kop-1), dg (K*, [OIK*]QOI(K*)) ,

) D e
F (K2n-1,Kon) 1+dg (k* Kkop-1)

(01K Ty (0 Jr e 120)

1+d#(k* Kkop-1)

. Then (3.11)

Case 4. If max{

becomes

ds (K*, (01K 10y, (K*)) dy (Kop-1, Kan) A
+
1+ dg(k*, Kan-1)

f(d¢ (K*, [OIK*]QOI (K*))) < f(dT(K*’KZn) + ‘f’[

Now since {«,} is ¥ -convergent to «*, so by (¥,) and the properties of ¢ € ¥ and taking the limit as
n — oo, we have

= —09,

dq: (K*, [OIK*]QOI(K*)) d?—' (K2n—la K2n)
1 + de (", K2p-1) *

lim f (dy (K, [01K" Ly, ) < lim f [d¢<x*, ) +

which is a contradiction. Therefore, we have d# (K*, [0:«],, OI(K*)) = 0, that is, «* € [O1k"], 0,6) - Doing
the same, we can prove that k* € [Ozk*]aoz(,(*) . Thus «* € [O1«*], 0, N [O2k7], 0,6 - ]
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Example 3.1. Let ‘W = [0, +00), define # - metric dr : W X W — [0, +0) by

drewy = | @7 () €10.41%[0.4],

PRI k-0l if (k) ¢ [0,4] % [0,4],
whenever «, w € ‘W and f(¢) = In(¢) for t > 0 and & = In(4). Then (W, d#) is a ¥ -complete F - metric
space but it is not a metric space because d# does not satisfy the triangle inequality as

dr(1,4) =9 > 5 = dr(1,3) + dr (3, 4).

Furthermore, let « € (0, 1] and define fuzzy mappings O;,0, : W — IV in this way:
) Ifxk=0
life=0

Q1)@ = { 0if %0,

(11) If 0 < k < oo,

aif 0 <1< @,
K 2
O =1 3T St<i

1f§O§L<K

OlfK << oo,

a/1f0<L< %5
w 2
Oy =1 3! =t<5o,

w
1f30_c<w,

Olfw <1< oo,

Now we define ¢ : [0, 00) — [0, 00) by ¢(¢) = ﬁt for t > 0. Then ¢ € ¥. Now for k € W, there
exist ap, (k) = (5) € (0,1] and ap,(x) = (3) € (0,1] such that [OlK](%),[Ozk](%) e C(2"). Define
B:WxW — [0,)by

1ifk # w,
ﬁ(""")‘{mszw

Now if k = w = 0, then [O]K](%) = [Ozw](%) = {0}. Thus,

max {B(k, ), B(w, K} Hr ([01K] s, . [Oaw]s)) = 0
( ( dr (k, w), dr(k, [01K] (), dr (, [Orw]s)), D
< ¢|max .

d}“(K [OIK]( ))df(w [Ozw]( ))
l+d¢(K w)

Now if k, w € (0, o), then

2
[O]K](%) = {L e W:O0k() > %} = [O, g—o]

Similarly,

a)2
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Thus for k # w and by the definition of d#, we have

max {8(k, ), B, )} Hr ([01K] s, . [O20]s))

2

_ K2 w22<(/<+w( ))

-~ 130 30) S\30 V¢
1

< - Ik — | = Edr,r(K, w)

<

dg(x,[04 K](%))d'F(w:[OZw](%))
1+d# (k,w)

( ( d‘F(K’ (U), dT(Ka [OIK](%))’ d{}‘((,(), [020)](%))’ ))
¢ | max .

Thus all assertions of Theorem 3.1 are satisfied. Thus there exists O € [0, +o0) such that 0 € [010](%) N

Corollary 3.1. Let (‘W,dg) be a F -metric space, B : W X W — [0,00) and let O : W — IV bea
fuzzy mapping. Assume that for each k € ‘W, there exist ap(k) € (0, 1] such that [Ok], ) € C QM.
Assume that these assertions also hold:

(i) (W, dy) be an F -complete,

(ii) For kg € ‘W there exists ap(ko) € (0, 1] such that k; € [Okola, k) With B(ko, k1) = 1,

(iii) There exists ¢ € ¥ such that

max {B(k, ), B(w, )} Hy ([OKlag(0 » [0 o)
[ [ dT(K9 (,()), d‘T‘-(K’ [OK](Y()(K))’ d‘?‘-(w7 [Ow]ao(w))’ J]
< ¢|max

d?" (K, [OK] ap(K) )dT (w, [Ow]ao(u)))
1+dy(k,w)

forall k,w e W,

(iii) O is Br-admissible.

(iv) If {«,} is a sequence in ‘W such that B(k,, k,+1) = 1 and k, — k as n — oo, then B(k,, k) > 1, for
all n.

Then there exists some k" € [OK" ], ) -

Proof. Taking one fuzzy mapping from ‘W into 7" in Theorem 3.1. O

Corollary 3.2. Let (‘W,dy) be a F-metric space and let Oy,0, : W — I be fuzzy mappings.
Assume that for each k € W, there exist ap,(k),ao,(k) € (0,1] such that [OIK]QO1 ® > [OZK]QOZ(K) €
C(2Y). Assume that these assertions also hold:

(i) (W,ds) be a F-complete,

(ii) For kg € ‘W, there exists ap, (ko) or ap,(ko) € (0,1] such that k, € [Olk()](lol(,(o) or K| €
[O20] a0, (o)

(iii) There exists ¢ € Y such that

dT(Ka CL)), dT(K’ [OIK]QOI (K))’ d(]»”((,l), [Ozw]aoz (o)))’
Hy ([OIK]QOI(K) s [Ozw]%(w)) < ¢ | max df(K,[OlK]O@l (K))dsf(w,[ozw]aOZ(w))
1+dg (k,w)

for all k, w € ‘W, then there exists some k* € [O]K*]aol w) N [OQK*]aoz(K*) .
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Proof. Taking B: W X W — [0, o) by B(k, w) = 1, for all k, w € W. O

Corollary 3.3. Let (W, dy) be a F -metric space and let O : W — I™ be fuzzy mapping. Assume that
for each k € ‘W, there exist ap(k) € (0, 1] such that [Ok], . € C (2W). Assume that these assertions
also hold:

(i) (W, dy) be an F -complete,

(ii) For ky € ‘W, there exists ap(ko) € (0, 1] such that k; € [Oko]

(iii) There exists ¢ € ¥ such that

ap(ko) °

dT(K’ (1.)), dT(K’ [OK](I/ (K))’ dy—‘((l), [Ow]a (a)))’
Hy ([OK]QO(K) , [Ow]ao(w)) <¢ [max [ dy(k,[OK],, O(K))?i,r(a),[()w]ao(w)) °
1+do (k)

forall k,w e W .

Then there exists some k" € [OK" ], ) -
Proof. Taking one fuzzy mapping from ‘W into 7" in Corollary 3.2. O
Corollary 3.4. Let (‘W,ds) be a F -metric space, B : WXW — [0, c0) and let R, R, : W — CB(W).

Assume that these conditions hold.:
(i) (W,ds) be a F-complete,
(ii) For each ky € ‘W, there exists k; € Riko with B(ko, k1) > 1.
(iii) There exists ¢ € ¥ such that

dr(k, w), de(k, R1K), dF(w, Row),
max {B(k, w), B(w, K)} HF (Rik, Row) < ¢ [max[ 7k ) dZK(,RIK)d;(B),RZZ)( 2) ))

1+dg(k,w)
forall k,w e W,
(iii) (R, Ro) is B-admissible,
(iv) If {«,} is a sequence in ‘W such that B(k,, k,+1) = 1 and k, — k as n — oo, then B(k,, k) > 1, for
all n.
Then there exists some k* € Rik* N Ryk*.

Proof. Let ap,, g, : W —(0, 1] be any two arbitrary mappings and 0,0, : W — I W be defined in
this way:
o, (), if t € Rik,

O1K)(0) = { 0 it ¢ Rk

and
@o,(k), if t € Rok,

0200 = { 0,  ifr¢Ro.

Then for all k € W, we get
[O1klo, w0 = {t € W : O1(k)(1) > ap,(K)} = Rik.

Similarly,
[Oa2kloy = {t € W O1(k)(1) > o, (K)} = Rok.
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Hence,

Hy ([O1K]01(K) , [OZw]Oz(w)) = Hy (Rik, Ryw)
for all x, w € W and by Theorem 3.1, there exists «* € ‘W such that

K€ [OlK*]Ol(K*) N [OZK*]Oz(K*) = R]K* N RZK*.

O
Corollary 3.5. Let (‘W,ds) be a F -metric space, B : W X W — [0,0) and let R : W — CB(W).
Assume that these conditions hold.:
(i) (W, ds) be an F -complete,
(ii) For each ky € ‘W, there exists k; € Riko with B(ko, k1) > 1,
(iii) There exists ¢ € Y such that

d7: (K,Rk)dyf (w,Rw)
1+dg (k,w)

max {B(k, ), B(w, K)} HF (Rx, Rw) < ¢ (max( dr (i, w), dy (K, RK), dr (w, Rw), ])

forall k,w e W,
(iii) R is B-admissible,
(iv) If {«,.} is a sequence in ‘W such that B(k,, k,+1) = 1 and k, — « as n — oo, then B(k,, k) > 1 for
all n.
Then there exists some k* € Rk*.

Proof. Taking one multivalued mapping from ‘W into CB(‘W) in Corollary 3.4. m|

Corollary 3.6. Let (‘W,ds) be a ¥ -metric space and let R, R, : W — CB(‘W). Assume that these
conditions hold.:

(i) (W, dy) be a F -complete,
(ii) For each kg € W, there exists k; € Rk,
(iii) There exists ¢ € Y such that

Hy (Rix Rowo) < 6 (max( (o, ). d (k. 1K), dr (@, Ro), D

dg (k,R1K)dg (w,Rrw)
1+dg(k,w)

forall k,w e W .
Then there exists some k* € Rik* N Ryk*.

Proof. Taking B : W X W — [0, 00) by B(k, w) = 1, for all x, w € W in Corollary 3.4. O

Corollary 3.7. Let (W,ds) be a ¥ -metric space and let R : ‘W — CB(‘'W). Assume that these
conditions hold:

(i) (W,ds) be an F -complete,
(ii) For each ky € W, there exists k; € Rk,
(iii) There exists ¢ € Y such that

Hy (R, Rw) < ¢(max( dy(k, w), dr(k, RK), d-(w, Rw), ]]

dy WRdy (. Rw)
1+dF (k,w)

forall k,w e W .
Then there exists some k* € Ri*.

Proof. Taking one multivalued mapping in Corollary 3.6. O
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4. Applications

In the present section, we discuss the solution of fuzzy integrodifferential equations in the context
of generalized Hukuhara derivative.

We denote K.(R) the family of all non-empty convex and compact subsets of real numbers R. The
notion of Hausdorff metric H in K.(R) is given in this way:

H(N{,N,) = max {sup inf ||a — b||g , sup inf |la — bllR} ,

aENl N2 bENz aen;
for N1, N, € K.(R). Then the pair (K.(R), H) is considered as complete metric space (see [12]).

Definition 4.1. A function ¢ : (—oo, +00) — [0, 1] is professed to be a fuzzy number if these assertions
hold:
(i) There exists ty € R such that p(ty) = 1,
(ii) For0 < A < 1,
© (At + (1 — Drr) = min{p(r)), p(t2)}

forallt, t, € R.
(iii) @ is upper semicontinuous,
(iv) [p]° = cl{t € R : p(t) > 0} is compact.

As a consequence, E' denotes the set of fuzzy numbers in R with the following property.
Fora € (0,1], [p]l* ={teR:p(t) > a} = [5{)7, gof] represents a - cut of the fuzzy set . For p € E',
one has that [p]* € K.(R) for each « € [0, 1]. The supremum on E' is defined by

}

for every 91, 9, € E', where p® — 9] = diam([p]) is called the diameter of [p] . We designate the class
of all continuous fuzzy functions given on [a, b], for p > 0 as C([a, b], E").
From [13], it is famous that the space C([a, b], E') is a complete metric space regarding

(7 @
~ 92

doo(gola @2) = Sup max {|fp(ly,l -
a€l0,1]

d(p1, 92) = sup de(91(2), 92(1)))

teJ

for 1, 9, € C([a, b]).

Lemma 4.1. [7] Let ¢, pz la,b] — E' and n € R. Then,
ﬁﬁﬂm+@ﬁ®m j@wmh+fmamt
Uwfmh®&=nfpﬂMn
(iii )adoo(pl o), pz(t)l; is integrable,

aw%qmmmfm®m<f%@mmmmm
forte| a b].
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Definition 4.2. [10] Suppose that E" denotes the family of all fuzzy numbers in R" and ¢, w,{ € E".
A point € is called the Hukuhara difference of ¢ and w , if p = w + € is satisfied. If this Hukuhara
difference exists, then it is described by 9 Oy w (or 9 — w ). Evidently, if ¢ Oy ¢ = {0}, and if p O w
exists, then it is unique.

Definition 4.3. [10] Let g : (a,b) — E". The function g is called a strongly generalized differentiable
(or GH-differentiable) at t, € (a, b), if Hgé(to) € E" such that

g(ty + 6)Opg(ty), g(10)Ong(ty — 6)

and

th +0)®gg(t, 10)®gye(ty — 0
lim 8(to + 0)Opg(1y) — Lm 8(10)Ogg(ty ) _ gé(to)-
5—0% o 60+ o)

Now Considering

{ o/(t) = g(t, (1)), teJ=]ap] (4.1)

9(0) = o,

where @/ is appropriated as GH-differentiable and g : J X E' — E! is continuous. The initial data g,
is supposed in E!. We show the family of all g : J — E! with continuous derivative as C'(J, E').

Lemma 4.2. A function ¢ € C'(J, E') is a solution of (4.1) if and only if it satisfies the following:
t
(1) = poOu(-1) fg(s, p(s)ds, teJ=]la,pl

Theorem 4.1. Let g : J x E' — E' be continuous such that:
(i) For p < wandt € J, we have g(t, ) < g(t, w);
(ii) There exist some constants T > 0 such that A € (0, m), such that

lg(t, 9(1) = 8(t, WD)l < Tmax {duo(p, )e ™)

if o < wforeacht € Jand p,w € E', where d.(p, w) is the supremum on E'. Then (4.1) has a fuzzy
solution in C'(J,E").

Proof. Let T > 0 and C!(J, E') equipped with

do(, ) = sup {du(p(1), (D)™},

teJ

p.w € C'(J.E"). Then with g(p) = In(p),p > 0 and i = 0, (C'(J, E"),d;) is complete F-complete
metric space.
Let M,Q : W — (0, 1]. For p € W, take

L) = 9oOn(=1) f g(s, p(s))ds.
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Assume @ < w. Then it follows by assumption (i) that

Ly()

PoOu(=1) f 8(s, 9(s))ds

A

PoOu(=1) fg(s, w(s))ds

R, ().

Thus L,(t) # R,(t). Consider Oy, O, : W — EV defined by

and likewise [ng]aoI @ = 1R,(®)}, so

H ([Ols{)]aol (9)° [OZw]aol(w))

,UO”Q(I") = {

M(gp), if r(t) = Ly(1),
0, otherwise.

Ow), if () = R,(0),

Hos(r) = { 0, otherwise.
Take ap,(9) = M(p) and ap,(w) = Q(w), we get

[019] 4y, () = {r € W (019)(1) 2 M(p)} = {Ly (D)},

IA

IA

IA

IA

IA

<

SUPye(0, p]nol(g,),we[()za}]go] ) inf [|p — (-U”R 5
max .
inf|lp — wllg

SupwE[()szaol () 9€l01 @Jaol ®

max {sup L) - Rw<r>||R} = sup||Ly(1) — R, ()
te] teJ
t t

fg(s, @(S))ds—fg(s,w(S))dS

a 0

sup
teJ

sup {fllg(s, P(s)) — &(s, w(S))IIdS}

t
sup {fduﬂmax {Dw(p,w)e“’“)}ds}

R

teJ
a

Asup {(t — a) max {Doo(@’ “’)e_m_a)}}

te]
1
/l(p - a)dr(@, (‘-)) < Ed‘r(go’ w)
¢ (d-(p, w))

( ( dT(p’ w)’ dT(SO’ [Olp]aol (g)))’ dT(wa [OZw]aol (w)),
¢ | max

d:(,[01 &9]‘101 (3,7))d‘r(w»[02w]a01 )
1+d:(p,w)

Hence, all the hypotheses of Theorem 3.1 are satisfied with ¢(r) = %t, for t > 0. Thus p* is a solution

of (4.1).
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5. Conclusions

In this article, we have proved some significant common a-fuzzy fixed point theorems for rational
(B, ¢)-contractive conditions in the context of complete F -metric spaces. The established theorems
improved and generalized different conventional theorems in fuzzy fixed point theory. We also
discussed the solution of fuzzy integrodifferential equations in the background of a generalized
Hukuhara derivative as application of our leading result which deals with uncertainties in decision
making. The established results are important contribution and generalization of the existing results in
fuzzy fixed point theory. Our results can be extended and improved for intuitionistic fuzzy mappings
as a future work.
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