In this paper, we define a semi-symmetric non-metric connection on super Riemannian manifolds. And we compute the curvature tensor and the Ricci tensor of a semi-symmetric non-metric connection on super warped product spaces. Next, we introduce two kinds of super warped product spaces with a semi-symmetric non-metric connection and give the conditions that two super warped product spaces with a semi-symmetric non-metric connection are the Einstein super spaces with a semi-symmetric non-metric connection.
Citation: Tong Wu, Yong Wang. Super warped products with a semi-symmetric non-metric connection[J]. AIMS Mathematics, 2022, 7(6): 10534-10553. doi: 10.3934/math.2022587
In this paper, we define a semi-symmetric non-metric connection on super Riemannian manifolds. And we compute the curvature tensor and the Ricci tensor of a semi-symmetric non-metric connection on super warped product spaces. Next, we introduce two kinds of super warped product spaces with a semi-symmetric non-metric connection and give the conditions that two super warped product spaces with a semi-symmetric non-metric connection are the Einstein super spaces with a semi-symmetric non-metric connection.
[1] | N. S. Agashe, M. R. Chafle, A semi-symmetric non-metric connection on a Riemannian manifold, Indian J. Pure Appl. Math., 23 (1992), 399–409. https://doi.org/10.1016/0739-6260(92)90065-L doi: 10.1016/0739-6260(92)90065-L |
[2] | N. S. Agashe, M. R. Chafle, On submanifolds of a Riemannian manifold with a semi-symmetric non-metric connection, Tensor, 55 (1994), 120–130. |
[3] | L. Alías, A. Romero, M. Sánchez, Spacelike hypersurfaces of constant mean curvature and Clabi-Bernstein type problems, Tohoku Math. J., 49 (1997), 337–345. https://doi.org/10.2748/tmj/1178225107 doi: 10.2748/tmj/1178225107 |
[4] | R. Bishop, B. O'Neill, Manifolds of negative curvature, Trans. Am. Math. Soc., 45 (1969), 1–49. https://doi.org/10.1090/S0002-9947-1969-0251664-4 doi: 10.1090/S0002-9947-1969-0251664-4 |
[5] | A. Bruce, J. Grabowski, Riemannian structures on $\mathbb{Z}_2^n$-manifolds, Mathematics, 8 (2020), 1469. https://doi.org/10.3390/math8091469 doi: 10.3390/math8091469 |
[6] | A. Bruce, J. Grabowski, Odd connections on supermanifolds: Existence and relation with affine connections, J. Phys. A, 53 (2020), 45–69. https://doi.org/10.48550/arXiv.2005.07449 doi: 10.48550/arXiv.2005.07449 |
[7] | F. Dobarro, E. Dozo, Scalar curvature and warped products of Riemannian manifolds, Trans. Am. Math. Soc., 303 (1987), 161–168. https://doi.org/10.1090/S0002-9947-1987-0896013-4 doi: 10.1090/S0002-9947-1987-0896013-4 |
[8] | P. Ehrlich, Y. Jung, S. Kim, Constant scalar curvatures on warped product manifolds, Tsukuba J. Math., 20 (1996), 239–265. https://doi.org/10.21099/tkbjm/1496162996 doi: 10.21099/tkbjm/1496162996 |
[9] | A. Gebarowski, On Einstein warped products, Tensor, 52 (1993), 204–207. |
[10] | F. Gholami, Y. Darabi, M. Mohammadi, S. Varsaie, M. Roshande, Einstein equations with cosmological constant in super space-time, arXiv, 2021. https://doi.org/10.48550/arXiv.2108.11437 |
[11] | O. Goertsches, Riemannian supergeometry, Math. Z., 260 (2008), 557–593. https://doi.org/10.1007/s00209-007-0288-z doi: 10.1007/s00209-007-0288-z |
[12] | H. Hayden, Subspace of a space with torsion, Proc. Lond. Math. Soc., 34 (1932), 27–50. https://doi.org/10.1007/BF01180619 doi: 10.1007/BF01180619 |
[13] | S. Sular, C. $\ddot{O}$zg$\ddot{u}$r, Warped products with a semi-symmetric metric connection, Taiwanese J. Math., 15 (2011), 1701–1719. https://doi.org/10.11650/twjm/1500406374 doi: 10.11650/twjm/1500406374 |
[14] | S. Sular, C. $\ddot{O}$zg$\ddot{u}$r, Warped products with a semi-symmetric non-metric connection, Arab. J. Sci. Eng., 36 (2011), 461–473. https://doi.org/10.1007/s13369-011-0045-9 doi: 10.1007/s13369-011-0045-9 |
[15] | Y. Wang, Curvature of multiply warped products with an affine connection, B. Korean Math. Soc., 50 (2012), 1567–1586. https://doi.org/10.4134/BKMS.2013.50.5.1567 doi: 10.4134/BKMS.2013.50.5.1567 |
[16] | Y. Wang, Multiply warped products with a semi-symmetric metric connection, Abstr. Appl. Anal., 2014 (2014), 1–12. https://doi.org/10.1155/2014/742371 doi: 10.1155/2014/742371 |
[17] | Y. Wang, Super warped products with a semi-symmetric metric connection, arXiv, 2021. https://doi.org/10.48550/arXiv.2201.08937 |
[18] | K. Yano, On semi-symmetric metric connection, Rev. Roum. Math. Pures Appl., 15 (1970), 1579–1586. |