Let $ p $ be a prime, $ k $ a positive integer, $ q = p^k $, and $ \mathbb{F}_q $ be the finite field with $ q $ elements. In this paper, by using the Jacobi sums, we give an explicit formula for the number of solutions of the two-variable diagonal sextic equations $ x_1^6+x_2^6 = c $ over $ \mathbb{F}_q $, with $ c\in\mathbb{F}_q^* $ and $ p\equiv1({\rm{mod}} \ 6) $. Furthermore, by using the reduction formula for Jacobi sums, the number of solutions of the diagonal sextic equations $ x_1^6+x_2^6+\cdots+x_n^6 = c $ of $ n\geq3 $ variables with $ c\in\mathbb{F}_q^* $ and $ p\equiv1({\rm{mod}} \ 6) $, can also be deduced.
Citation: Shuangnian Hu, Rongquan Feng. On the number of solutions of two-variable diagonal sextic equations over finite fields[J]. AIMS Mathematics, 2022, 7(6): 10554-10563. doi: 10.3934/math.2022588
Let $ p $ be a prime, $ k $ a positive integer, $ q = p^k $, and $ \mathbb{F}_q $ be the finite field with $ q $ elements. In this paper, by using the Jacobi sums, we give an explicit formula for the number of solutions of the two-variable diagonal sextic equations $ x_1^6+x_2^6 = c $ over $ \mathbb{F}_q $, with $ c\in\mathbb{F}_q^* $ and $ p\equiv1({\rm{mod}} \ 6) $. Furthermore, by using the reduction formula for Jacobi sums, the number of solutions of the diagonal sextic equations $ x_1^6+x_2^6+\cdots+x_n^6 = c $ of $ n\geq3 $ variables with $ c\in\mathbb{F}_q^* $ and $ p\equiv1({\rm{mod}} \ 6) $, can also be deduced.
[1] | J. Ax, Zeros of polynomials over finite fields, Amer. J. Math., 86 (1964), 255–261. http://dx.doi.org/10.2307/2373163 doi: 10.2307/2373163 |
[2] | I. Baoulina, On the number of solutions of the equation $a_1x_1^{m_1}+\cdots +a_nx_n^{m_n} = bx_1\cdots x_n$ in a finite field, Acta Appl. Math., 89 (2005), 35–39. http://dx.doi.org/10.1007/s10440-004-5583-7 doi: 10.1007/s10440-004-5583-7 |
[3] | I. Baoulina, Generalizations of the Markoff-Hurwitz equations over finite fields, J. Number Theory, 118 (2006), 31–52. http://dx.doi.org/10.1016/j.jnt.2005.08.009 doi: 10.1016/j.jnt.2005.08.009 |
[4] | I. Baoulina, On the equation $(x_1^{m_1}+\cdots+x_n^{m_n})^k = ax_1\cdots x_n$ over a finite field, Finite Fields Appl., 13 (2007), 887–895. http://dx.doi.org/10.1016/j.ffa.2006.09.011 doi: 10.1016/j.ffa.2006.09.011 |
[5] | I. Baoulina, Solutions of equations over finite fields: Enumeration via bijections, J. Algebra Appl., 15 (2016), 1650136. http://dx.doi.org/10.1142/S021949881650136X doi: 10.1142/S021949881650136X |
[6] | B. Berndt, R. Evans, K. Williams, Gauss and Jacobi sums, Wiley-Interscience, New York, 1998. |
[7] | W. Cao, On generalized Markoff-Hurwitz-type equations over finite fields, Acta Appl. Math., 112 (2010), 275–281. http://dx.doi.org/10.1007/s10440-010-9568-4 doi: 10.1007/s10440-010-9568-4 |
[8] | W. Cao, Q. Sun, On a class of equations with special degrees over finite fields, Acta Arith., 130 (2007), 195–202. http://dx.doi.org/10.4064/aa130-2-8 doi: 10.4064/aa130-2-8 |
[9] | S. Chowla, J. Cowles, M. Cowles, On the number of zeros of diagonal cubic forms, J. Number Theory, 9 (1977), 502–506. http://dx.doi.org/10.1016/0022-314X(77)90010-5 doi: 10.1016/0022-314X(77)90010-5 |
[10] | S. Hu, S. Hong, W. Zhao, The number of rational points of a family of hypersurfaces over finite fields, J. Number Theory, 156 (2015), 135–153. http://dx.doi.org/10.1016/j.jnt.2015.04.006 doi: 10.1016/j.jnt.2015.04.006 |
[11] | S. Hu, J. Zhao, The number of rational points of a family of algebraic varieties over finite fields, Algebra Colloq., 24 (2017), 705–720. http://dx.doi.org/10.1142/S1005386717000475 doi: 10.1142/S1005386717000475 |
[12] | L. K. Hua, H. S. Vandiver, On the number of solutions of some trinomial equations in a finite field, PNAS, 35 (1949), 477–581. http://dx.doi.org/10.1073/pnas.35.8.477 doi: 10.1073/pnas.35.8.477 |
[13] | K. Ireland, M. Rosen, A classical introduction to modern number theory, 2 Eds., Springer-Verlag, New York, 1990. |
[14] | R. Lidl, H. Niederreiter, Finite fields, 2 Eds., Cambridge University Press, Cambridge, 1997. |
[15] | G. Myerson, On the number of zeros of diagonal cubic forms, J. Number Theory, 11 (1979), 95–99. http://dx.doi.org/10.1016/0022-314X(79)90023-4 doi: 10.1016/0022-314X(79)90023-4 |
[16] | C. Small, Arithmetic of finite fields, Marcel Dekker, New York, 1991. |
[17] | A. Weil, Number of solutions of equations in finite field, Bull. Amer. Math. Soc., 55 (1949), 497–508. http://dx.doi.org/10.1090/S0002-9904-1949-09219-4 doi: 10.1090/S0002-9904-1949-09219-4 |
[18] | J. Wolfmann, The number of solutions of certain diagonal equations over finite fields, J. Number Theory, 42 (1992), 247–257. http://dx.doi.org/10.1016/0022-314x(92)90091-3 doi: 10.1016/0022-314x(92)90091-3 |
[19] | W. Zhang, J. Hu, The number of solutions of the diagonal cubic congruence equation mod $p$, Math. Rep., 20 (2018), 73–80. |
[20] | J. Zhang, D. Wan, Rational points on complete symmetric hypersurfaces over finite fields, Discrete Math., 11 (2020), 112072. http://dx.doi.org/10.1016/j.disc.2020.112072 doi: 10.1016/j.disc.2020.112072 |
[21] | J. Zhang, D. Wan, Complete symmetric polynomials over finite fields have many rational zeros, Sci. Sin. Math., 51 (2021), 1677–1684. http://dx.doi.org/10.1360/ssm-2020-0328 doi: 10.1360/ssm-2020-0328 |
[22] | J. Zhao, S. Hong, C. Zhu, The number of rational points of certain quartic diagonal hypersurfaces over finite fields, AIMS Math., 5 (2020), 2710–2731. http://dx.doi.org/10.3934/math.2020175 doi: 10.3934/math.2020175 |
[23] | J. Zhao, Y. Zhao, On the number of solutions of two-variable diagonal quartic equations over finite fields, AIMS Math., 5 (2020), 2979–2991. http://dx.doi.org/10.3934/math.2020192 doi: 10.3934/math.2020192 |