Research article

On some $ m $-th root metrics

  • Received: 16 May 2024 Revised: 26 July 2024 Accepted: 30 July 2024 Published: 13 August 2024
  • MSC : 53C30, 53C60

  • The Ricci curvature in Finsler geometry naturally generalizes the Ricci curvature in Riemannian geometry. In this paper, we study the $ m $-th root metric with weakly isotropic scalar curvature and obtain that its scalar curvature must vanish. Further, we prove that a locally conformally flat cubic Finsler metric with weakly isotropic scalar curvature must be locally Minkowskian.

    Citation: Xiaoling Zhang, Cuiling Ma, Lili Zhao. On some $ m $-th root metrics[J]. AIMS Mathematics, 2024, 9(9): 23971-23978. doi: 10.3934/math.20241165

    Related Papers:

  • The Ricci curvature in Finsler geometry naturally generalizes the Ricci curvature in Riemannian geometry. In this paper, we study the $ m $-th root metric with weakly isotropic scalar curvature and obtain that its scalar curvature must vanish. Further, we prove that a locally conformally flat cubic Finsler metric with weakly isotropic scalar curvature must be locally Minkowskian.



    加载中


    [1] H. Akbar-Zadeh, Sur les espaces de Finsler $\grave{a}$ courbures sectionnelles constantes, Bulletins de l'Académie Royale de Belgique, 74 (1988), 281–322. https://doi.org/10.3406/barb.1988.57782 doi: 10.3406/barb.1988.57782
    [2] P. L. Antonelli, R. S. Ingarden, M. Matsumoto, The theory of Sprays and Finsler space with applications in physics and biology, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-015-8194-3
    [3] G. Aranasiu, M. Neagu, On Cartan spaces with the $m$-th root metric $K(x, p) = \sqrt[m]{a^{i_{1} i_{2}...i(m)}(x) p_{i_{1}} p_{i_{2}}\cdot \cdot \cdot p_{i_{m}}}$, Hypercomplex Numbers in Geometry and Physics, 2 (2009), 67–73.
    [4] B. Chen, K. Xia, On conformally flat polynomial $(\alpha, \beta)$-metrics with weakly isotropic scalar curvature, J. Korean Math. Soc., 56 (2019), 329–352. https://doi.org/10.4134/JKMS.j180186 doi: 10.4134/JKMS.j180186
    [5] X. Cheng, Y. Gong, The Randers metrics of weakly isotropic scalar curvature, Acta Mathematica Sinica (Chinese Series), 64 (2021), 1027–1036. https://doi.org/10.12386/A2021sxxb0085 doi: 10.12386/A2021sxxb0085
    [6] B. Kim, H. Park, The $m$-th root Finsler metrics admitting $(\alpha, \beta)-$types, Bull. Korean Math. Soc., 41 (2004), 45–52. https://doi.org/10.4134/BKMS.2004.41.1.045 doi: 10.4134/BKMS.2004.41.1.045
    [7] M. Matsumoto, S. Numara, On Finsler spaces with a cubic metric, Tensor (N. S.), 33 (1979), 153–162.
    [8] Y. Ma, X. Zhang, M. Zhang, Kropina metrics with isotropic scalar curvature via navigation data, Mathematics, 12 (2024), 505. https://doi.org/10.3390/math12040505 doi: 10.3390/math12040505
    [9] H. Shimada, On Finsler spaces with metric $L = \sqrt[m]{a_{i_{1}i_{2...}i_{m}} y^{i_{1}} y^{i_{2}}\dots y^{i_{m}}}$, Tensor (N. S.), 33 (1979), 365–372.
    [10] B. K. Tripathi, S. Khanb, V. Chaubey, On projectively flat Finsler space with a cubic $(\alpha, \beta)$-metric, Filomat, 37 (2023), 8975–8982. https://doi.org/10.2298/FIL2326975T doi: 10.2298/FIL2326975T
    [11] A. Tayebi, On generalized 4-th root metrics of isotropic scalar curvature, Math. Slovaca, 68 (2018), 907–928. https://doi.org/10.1515/ms-2017-0154 doi: 10.1515/ms-2017-0154
    [12] A. Tayebi, M. Razgordani, B. Najafi, On conformally flat cubic $(\alpha, \beta)$-metrics, Vietnam J. Math., 49 (2021), 987–1000. https://doi.org/10.1007/s10013-020-00389-0 doi: 10.1007/s10013-020-00389-0
    [13] V. J. M. Wegener, Untersuchungen der zwei- und dreidimensionalen Finslerschen Raumemit der Grundform $L = \sqrt[3]{a_ijk x^{'i} x^{'k} x^{'l}}$, Proc. K. Akad. Wet. (Amsterdam), 38 (1935), 949–955.
    [14] Y. Yu, Y You, On Einstein $m$-th root metrics, Differ. Geom. Appl., 28 (2010), 290–294. https://doi.org/10.1016/j.difgeo.2009.10.011 doi: 10.1016/j.difgeo.2009.10.011
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(372) PDF downloads(42) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog