The Ricci curvature in Finsler geometry naturally generalizes the Ricci curvature in Riemannian geometry. In this paper, we study the $ m $-th root metric with weakly isotropic scalar curvature and obtain that its scalar curvature must vanish. Further, we prove that a locally conformally flat cubic Finsler metric with weakly isotropic scalar curvature must be locally Minkowskian.
Citation: Xiaoling Zhang, Cuiling Ma, Lili Zhao. On some $ m $-th root metrics[J]. AIMS Mathematics, 2024, 9(9): 23971-23978. doi: 10.3934/math.20241165
The Ricci curvature in Finsler geometry naturally generalizes the Ricci curvature in Riemannian geometry. In this paper, we study the $ m $-th root metric with weakly isotropic scalar curvature and obtain that its scalar curvature must vanish. Further, we prove that a locally conformally flat cubic Finsler metric with weakly isotropic scalar curvature must be locally Minkowskian.
[1] | H. Akbar-Zadeh, Sur les espaces de Finsler $\grave{a}$ courbures sectionnelles constantes, Bulletins de l'Académie Royale de Belgique, 74 (1988), 281–322. https://doi.org/10.3406/barb.1988.57782 doi: 10.3406/barb.1988.57782 |
[2] | P. L. Antonelli, R. S. Ingarden, M. Matsumoto, The theory of Sprays and Finsler space with applications in physics and biology, Dordrecht: Springer, 1993. https://doi.org/10.1007/978-94-015-8194-3 |
[3] | G. Aranasiu, M. Neagu, On Cartan spaces with the $m$-th root metric $K(x, p) = \sqrt[m]{a^{i_{1} i_{2}...i(m)}(x) p_{i_{1}} p_{i_{2}}\cdot \cdot \cdot p_{i_{m}}}$, Hypercomplex Numbers in Geometry and Physics, 2 (2009), 67–73. |
[4] | B. Chen, K. Xia, On conformally flat polynomial $(\alpha, \beta)$-metrics with weakly isotropic scalar curvature, J. Korean Math. Soc., 56 (2019), 329–352. https://doi.org/10.4134/JKMS.j180186 doi: 10.4134/JKMS.j180186 |
[5] | X. Cheng, Y. Gong, The Randers metrics of weakly isotropic scalar curvature, Acta Mathematica Sinica (Chinese Series), 64 (2021), 1027–1036. https://doi.org/10.12386/A2021sxxb0085 doi: 10.12386/A2021sxxb0085 |
[6] | B. Kim, H. Park, The $m$-th root Finsler metrics admitting $(\alpha, \beta)-$types, Bull. Korean Math. Soc., 41 (2004), 45–52. https://doi.org/10.4134/BKMS.2004.41.1.045 doi: 10.4134/BKMS.2004.41.1.045 |
[7] | M. Matsumoto, S. Numara, On Finsler spaces with a cubic metric, Tensor (N. S.), 33 (1979), 153–162. |
[8] | Y. Ma, X. Zhang, M. Zhang, Kropina metrics with isotropic scalar curvature via navigation data, Mathematics, 12 (2024), 505. https://doi.org/10.3390/math12040505 doi: 10.3390/math12040505 |
[9] | H. Shimada, On Finsler spaces with metric $L = \sqrt[m]{a_{i_{1}i_{2...}i_{m}} y^{i_{1}} y^{i_{2}}\dots y^{i_{m}}}$, Tensor (N. S.), 33 (1979), 365–372. |
[10] | B. K. Tripathi, S. Khanb, V. Chaubey, On projectively flat Finsler space with a cubic $(\alpha, \beta)$-metric, Filomat, 37 (2023), 8975–8982. https://doi.org/10.2298/FIL2326975T doi: 10.2298/FIL2326975T |
[11] | A. Tayebi, On generalized 4-th root metrics of isotropic scalar curvature, Math. Slovaca, 68 (2018), 907–928. https://doi.org/10.1515/ms-2017-0154 doi: 10.1515/ms-2017-0154 |
[12] | A. Tayebi, M. Razgordani, B. Najafi, On conformally flat cubic $(\alpha, \beta)$-metrics, Vietnam J. Math., 49 (2021), 987–1000. https://doi.org/10.1007/s10013-020-00389-0 doi: 10.1007/s10013-020-00389-0 |
[13] | V. J. M. Wegener, Untersuchungen der zwei- und dreidimensionalen Finslerschen Raumemit der Grundform $L = \sqrt[3]{a_ijk x^{'i} x^{'k} x^{'l}}$, Proc. K. Akad. Wet. (Amsterdam), 38 (1935), 949–955. |
[14] | Y. Yu, Y You, On Einstein $m$-th root metrics, Differ. Geom. Appl., 28 (2010), 290–294. https://doi.org/10.1016/j.difgeo.2009.10.011 doi: 10.1016/j.difgeo.2009.10.011 |