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1. Introduction

The Ricci curvature in Finsler geometry naturally generalizes the Ricci curvature in Riemannian
geometry. However, in Finsler geometry, there are several versions of the definition of scalar curvature
because the Ricci curvature tensor is defined in different forms. Here we adopt the definition of scalar
curvature, which was introduced by Akbar–Zadeh [1, see (2.1)]. Tayebi [11] characterized general
fourth-root metrics with isotropic scalar curvature. Moreover, he studied Bryant metrics with isotropic
scalar curvature. Later, a locally conformally flat (α, β)-metric with weakly isotropic scalar curvature
was studied by Chen–Xia [4]. They proved that its scalar curvature must vanish. Recently, Cheng–
Gong [5] proved that if a Randers metric is of weakly isotropic scalar curvature, then it must be of
isotropic S -curvature. Furthermore, they concluded that when a locally conformally flat Randers metric
is of weakly isotropic scalar curvature, it is Minkowskian or Riemannian. Very recently, Ma–Zhang–
Zhang [8] showed that the Kropina metric with isotropic scalar curvature is equivalent to an Einstein
Kropina metric according to the navigation data.

Shimada [9] first developed the theory of m-th root metrics as an interesting example of Finsler
metrics, immediately following Matsumoto and Numata’s theory of cubic metrics [7]. It is applied to
biology as an ecological metric by Antonelli [2]. Later, many scholars studied these metrics ( [3,6,10–
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12], etc). In [13], cubic Finsler manifolds in dimensions two or three were studied by Wegener. He only
abstracted his PhD thesis and barely did all the calculations in that paper. Kim and Park [6] studied
the m-th root Finsler metrics which admit (α, β)−types. In [12], Tayebi–Razgordani–Najafi showed
that if the locally conformally flat cubic metric is of relatively isotropic mean Landsberg curvature
on a manifold M of dimension n(≥ 3), then it is a Riemannian metric or a locally Minkowski metric.
Tripathia–Khanb–Chaubey [10] considered a cubic (α, β)-metric which is a special class of p-power
Finsler metric, and obtained the conditions under which the Finsler space with such special metric will
be projectively flat. Further, they obtained in which case this Finsler space will be a Berwald space or
Douglas space.

In this paper, we mainly focus on m-th root metrics with weakly isotropic scalar curvature and
obtain the following results:
Theorem 1.1. Let the m(≥ 3)-th root metric F be of weakly isotropic scalar curvature. Then its scalar
curvature must vanish.

Let A := ai1i2···im(x)yi1yi2 · · · yim . If A = Fm is irreducible, then the further result is obtained as
follows:
Theorem 1.2. Let F =

m√A be the m(≥ 3)-th root metric. Assume that A is irreducible. Then
the following are equivalent: (i) F is of weakly isotropic scalar curvature; (ii) its scalar curvature
vanishes; (iii) it is Ricci-flat.

Based on Theorem 1.1, we obtain the result for locally conformally flat cubic Finsler metrics as
following:
Theorem 1.3. Let F be a locally conformally flat cubic Finsler metric on a manifold M of dimension
n(≥ 3). If F is of weakly isotropic scalar curvature, then F must be locally Minkowskian.

2. Preliminaries

In this section, we mainly introduce several geometric quantities in Finsler geometry and several
results that will be used later.

Let M be an n(≥ 3)-dimensional smooth manifold. The points in the tangent bundle T M are denoted
by (x, y), where x ∈ M and y ∈ TxM. Let (xi, yi) be the local coordinates of T M with y = yi ∂

∂xi . A
Finsler metric on M is a function F : T M −→ [0,+∞) such that
(1) F is smooth in T M\{0};
(2) F(x, λy) = λF(x, y) for any λ>0;
(3) The fundamental quadratic form g = gi j(x, y)dxi ⊗ dx j, where

gi j(x, y) = [
1
2

F2(x, y)]yiy j

is positively definite. We use the notations: Fyi := ∂F
∂yi , Fxi := ∂F

∂xi , F2
yiy j := ∂2F2

∂yi∂y j .
Let F be a Finsler metric on an n-dimensional manifold M, and let Gi be the geodesic coefficients

of F, which are defined by

Gi :=
1
4

gi j(F2
xky jyk − F2

x j),

where (gi j) = (gi j)−1. For any x ∈ M and y ∈ TxM\{0}, the Riemann curvature Ry := Ri
k(x, y) ∂

∂xi ⊗ dxk

is defined by
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Ri
k := 2Gi

xk −Gi
x jyky j + 2G jGi

y jyk −Gi
y jG

j
yk .

The Ricci curvature Ric is the trace of the Riemann curvature defined by

Ric := Rk
k.

The Ricci tensor is
Rici j :=

1
2

Ricyiy j .

By the homogeneity of Ric, we have Ric = Rici jyiy j. The scalar curvature r of F is defined as

r := gi jRici j. (2.1)

A Finsler metric is said to be of weakly isotropic scalar curvature if there exists a 1-form θ = θi(x)yi

and a scalar function χ = χ(x) such that

r = n(n − 1)(
θ

F
+ χ). (2.2)

An (α, β)-metric is a Finsler metric of the form

F = αφ(s),

where α =
√

ai j(x)yiy j is a Riemannian metric, β = bi(x)yi is a 1-form, s := β

α
and b :=‖ β ‖α< b0. It

has been proved that F = αφ(s) is a positive definite Finsler metric if and only if φ = φ(s) is a positive
C∞ function on (−b0, b0) satisfying the following condition:

φ(s) − sφ′(s) + (B − s2)φ′′(s) > 0, |s| ≤ b < b0, (2.3)

where B := b2.
Let F = 3

√
ai jk(x)yiy jyk be a cubic metric on a manifold M of dimension n ≥ 3. By choosing a

suitable non-degenerate quadratic form α =
√

ai j(x)yiy j and one-form β = bi(x)yi, it can be written in
the form

F =
3
√

pβα2 + qβ3,

where p and q are real constants such that p + qB , 0 (see [6]). The above equation can be rewritten as

F = α(ps + qs3)
1
3 ,

which means that F is also an (α, β)-metric with φ(s) = (ps + qs3)
1
3 . Then, by (2.3), we obtain

− p2B + p(4p + 3qB)s2 > 0. (2.4)

Two Finsler metrics F and F̃ on a manifold M are said to be conformally related if there is a scalar
function κ = κ(x) on M such that F = eκ(x)F̃. Particularly, an (α, β)-metric F = αφ( β

α
) is said to be

conformally related to a Finsler metric F̃ if F = eκ(x)F̃ with F̃ = α̃φ(s̃) = α̃φ( β̃
α̃
). In the following,

we always use symbols with a tilde to denote the corresponding quantities of the metric F̃. Note that
α = eκ(x)α̃, β = eκ(x)β̃, thus s̃ = s.
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A Finsler metric that is conformally related to a locally Minkowski metric is said to be locally
conformally flat. Thus, a locally conformally flat (α, β)-metric F has the form F = eκ(x)F̃, where
F̃ = α̃φ( β̃

α̃
) is a locally Minkowski metric.

Denoting

ri j :=
1
2

(bi| j + b j|i), si j :=
1
2

(bi| j − b j|i),

ri
j := ailrl j, si

j := ailsl j,

r j := biri j, r := biri, s j := bisi j,

r00 := ri jyiy j, si
0 := si

jy
j, s0 := siyi,

where bi := ai jb j, bi| j denotes the covariant differentiation with respect to α.
Let Gi and Gi

α denote the geodesic coefficients of F and α, respectively. The geodesic coefficients
Gi of F = αφ( β

α
) are related to Gi

α by

Gi = Gi
α + αQsi

0 + (−2Qαs0 + r00)(Ψbi + Θα−1yi),

where

Q :=
φ
′

φ − sφ′
, Θ :=

φφ
′

− s(φφ
′′

+ φ
′

φ
′

)
2φ[(φ − sφ) + (B − s2)φ′′]

,

Ψ :=
φ
′′

2[(φ − sφ′) + (B − s2)φ′′]
.

Assume that F = αφ( β
α
) is conformally related to a Finsler metric F̃ = α̃φ( β̃

α̃
) on M, i.e., F = eκ(x)F̃.

Then
ai j = e2κ(x)ãi j, bi = eκ(x)̃bi, b̃ :=‖ β̃ ‖α̃=

√
ãi j̃bĩb j = b.

Further, we have
bi| j = eκ(x)(̃bi‖ j − b̃ jκi + b̃lκ

lãi j),
αΓl

i j =α̃ Γ̃l
i j + κ jδ

l
i + κiδ

l
j − κ

lãi j,

ri j = eκ(x)r̃i j +
1
2

eκ(x)(−b̃ jκi − b̃iκ j + 2̃blκ
lãi j),

si j = eκ(x) s̃i j +
1
2

eκ(x)(̃biκ j − b̃ jκi),

ri = r̃i +
1
2

(̃blκ
l̃bi − b2κi), r = e−κ(x)r̃,

si = s̃i +
1
2

(b2κi − b̃lκ
l̃bi),

ri
i = e−κ(x)r̃i

i + (n − 1)e−κ(x)̃biκ
i,

s j
i = e−κ(x) s̃ j

i +
1
2

e−κ(x)(̃b jκi − b̃iκ
j).

Here b̃i‖ j denotes the covariant derivatives of b̃i with respect to α̃, αΓm
i j and α̃Γ̃m

i j denote Levi–Civita
connections with respect to α and α̃, respectively. In the following, we adopt the notations κi := ∂κ(x)

∂xi ,
κi j := ∂2κ(x)

∂xi∂x j , κi := ãi jκ j, b̃i := ãi j̃b j, f := b̃iκ
i, f1 := κi j̃biy j, f2 := κi j̃bĩb j, κ0 := κiyi, κ00 := κi jyiy j and

‖ Oκ ‖2
α̃
:= ãi jκiκ j.
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Lemma 2.1. ( [4]) Let F = eκ(x)F̃, where F̃ = α̃φ( β̃
α̃
) is locally Minkowskian. Then the Ricci curvature

of F is determined by

Ric = D1‖ Oκ ‖
2
α̃α̃ + D2κ

2
0 + D3κ0 f α̃ + D4 f 2α̃2 + D5 f1α̃ + D6α̃

2 + D7κ00,

where Dk(k = 1, ..., 7) is listed in Lemma 3.2 in [4].
Lemma 2.2. ( [4]) Let F = eκ(x)F̃, where F̃ = α̃φ( β̃

α̃
) is locally Minkowskian. Then the scalar curvature

of F is determined by

r =
1
2

e−2κ(x)ρ−1[Σ1 − (τ + ηλ2)Σ2 −
λη

α̃
Σ3 −

η

α̃2 Σ4],

where
τ :=

δ

1 + δB
, η :=

µ

1 + Y2µ
, λ :=

ε − δs
1 + δB

,

δ :=
ρ0 − ε

2ρ2

ρ
, ε :=

ρ1

ρ2
, µ :=

ρ2

ρ
,

Y :=
√

Ai jY iY j, Ai j := ai j + δbib j,

ρ := φ(φ − sφ′), ρ0 := φφ′′ + φ′φ′,

ρ1 := −s(φφ′′ + φ′φ′) + φφ′, ρ2 := s[s(φφ′′ + φ′φ′) − φφ′],

and Σi(i = 1, ..., 4) are listed in the proof of Lemma 3.3 in [4].
Lemma 2.3. ( [14]) Let m-th root metric F = m

√
ai1i2···im(x)yi1yi2 · · · yim be a Finsler metric on a manifold

of dimension n. Then the Ricci curvature of F is a rational function in y.

3. Proof of main theorems

In this section, we will prove the main theorems. Firstly, we give the proof of Theorem 1.1.
The proof of Theorem 1.1. For an m-th root metric F = m

√
ai1i2···im(x)yi1yi2 · · · yim on a manifold M, the

inverse of the fundamental tensor of F is given by (see [14])

gi j =
1

(m − 1)F2 (AAi j + (m − 2)yiy j), (3.1)

where Ai j = 1
m(m−1)

∂2A
∂yi∂y j and (Ai j) = (Ai j)−1. Thus, F2gi j are rational functions in y.

By Lemma 2.3, the Ricci curvature Ric of m-th root metric is a rational function in y. Thus, Rici j :=
Ricyiy j are rational functions. According to (2.1), we have

F2r = F2gi jRici j. (3.2)

This means that F2r is a rational function in y.
On the other hand, if F is of weakly isotropic scalar curvature, according to (2.2), we obtain

F2r = n(n − 1)(θF + χF2),

where θ is a 1-form and χ is a scalar function. The right side of the above equation is an irrational
function in y. Comparing it with (3.2), we have r = 0. �
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In the following, the proof of Theorem 1.2 is given.
The proof of Theorem 1.2. By Theorem 1.1, we conclude that F is of weakly isotropic scalar curvature
if and only if its scalar curvature vanishes. So we just need to prove that (ii) is equivalent to (iii).
Assume that the scalar curvature vanishes. Hence, by (3.1), 0 = r = gi jRici j = 1

m−1 F−2(AAi j + (m −
2)yiy j)Rici j holds. It means that

0 = (AAi j + (m − 2)yiy j)Rici j = AAi jRici j + (m − 2)Ric.

Since A is irreducible, Ric must be divided by A. Thus, Ric = 0.
Conversely, if Ric = 0, then by the definition of r we have r = 0. �
Based on Theorem 1.1, we can prove Theorem 1.3 for locally conformally flat cubic metrics.

The proof of Theorem 1.3. Assume that the locally conformally flat cubic metric F is of weakly
isotropic scalar curvature. Then, by Lemma 2.2 and Theorem 1.1, we obtain the scalar curvature
vanishes, i.e.,

Σ1 − (τ + ηλ2)Σ2 −
λη

α̃
Σ3 −

η

α̃2 Σ4 = 0.

Further, by detailed expressions of Σi(i = 1, · · · 4), the above equation can be rewritten as

B(4p + 3qB)κ2
0 − 4(4p + 3qB)β̃κ0 f + 4pα̃2 f 2

(4p + 3qB)8α̃2s2γ7 +
T
γ6 = 0, (3.3)

where γ := pBα̃2 − (4p + 3qB)̃β2 and T has no γ−1.
Thus, the first term of (3.3) can be divided by γ. It means that there is a function h(x) on M such

that
B(4p + 3qB)κ2

0 − 4(4p + 3qB)̃βκ0 f + 4pα̃2 f 2 = h(x)γ.

The above equation can be rewritten as

B(4p + 3qB)κ2
0 − 4(4p + 3qB)̃βκ0 f + 4pα̃2 f 2 = h(x)[pBα̃2 − (4p + 3qB)̃β2]. (3.4)

Differentiating (3.4) with yi yields

B(4p + 3qB)κ0κi − 2(4p + 3qB)(̃biκ0 + β̃κi) f + 4p̃ailyl f 2 = h(x)[pB̃ailyl − (4p + 3qB)̃β̃bi]. (3.5)

Differentiating (3.5) with y j yields

B(4p + 3qB)κiκ j − 2(4p + 3qB)(̃biκ j + b̃ jκi) f + 4p̃ai j f 2 = h(x)[pB̃ai j − (4p + 3qB)̃bĩb j].

Contracting the above with b̃ĩb j yields

B f 2(8p + 9qB) = 3B2h(x)(p + qB).

Thus, we have

h(x) =
(8p + 9qB) f 2

3B(p + qB)
. (3.6)

Substituting (3.6) into (3.5) and contracting (3.5) with b̃i yield

(4p + 3qB) f ( f β̃ − Bκ0) = 0. (3.7)
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Furthermore, by (2.4) and 4p + 3qB , 0, we have f ( f β̃ − Bκ0) = 0.
Case I: f = 0. It means h(x) = 0 by (3.6). Thus, one has that κi = 0 by (3.4), which means

κ = constant.

Case II: f , 0. It implies that f β̃ − Bκ0 = 0. Substituting it into (3.4), we obtain

β̃2 = −Bα̃2,

which does not exist.
Above all, we have κ = constant. Thus we conclude that the conformal transformation must be

homothetic. �
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