Research article

Observer-based robust preview tracking control for a class of continuous-time Lipschitz nonlinear systems

  • Received: 06 June 2024 Revised: 07 August 2024 Accepted: 26 August 2024 Published: 13 September 2024
  • MSC : 34H05, 93B52, 93C10

  • In this paper, a novel observer-based robust preview tracking controller design method is proposed for a class of continuous-time Lipschitz nonlinear systems with external disturbances and unknown states. First, a state observer is designed to reconstruct unknown system states. Second, using differentiation, the state lifting technique, the differential mean value theorem, and several ingenious mathematical manipulations, an augmented error system (AES) containing the previewable information of a reference signal is constructed, thereby transforming the tracking control problem into a robust $ H_{\infty} $ control problem. Based on linear parameter-varying (LPV) system theory, a sufficient condition for asymptotic stability of a closed-loop system with a robust $ H_{\infty} $ performance level is established in terms of the linear matrix inequality (LMI). Furthermore, a tracking controller, which includes observer-based feedback control, integral control, and preview feedforward compensation, is established for the original system. In particular, the tracking controller design is simplified by computing the observer and tracking controller gains simultaneously via only a one-step LMI algorithm. Finally, numerical simulation results demonstrate that the proposed controller leads to superior improvement in the output tracking performance compared with the existing methods.

    Citation: Xiao Yu, Yan Hua, Yanrong Lu. Observer-based robust preview tracking control for a class of continuous-time Lipschitz nonlinear systems[J]. AIMS Mathematics, 2024, 9(10): 26741-26764. doi: 10.3934/math.20241301

    Related Papers:

  • In this paper, a novel observer-based robust preview tracking controller design method is proposed for a class of continuous-time Lipschitz nonlinear systems with external disturbances and unknown states. First, a state observer is designed to reconstruct unknown system states. Second, using differentiation, the state lifting technique, the differential mean value theorem, and several ingenious mathematical manipulations, an augmented error system (AES) containing the previewable information of a reference signal is constructed, thereby transforming the tracking control problem into a robust $ H_{\infty} $ control problem. Based on linear parameter-varying (LPV) system theory, a sufficient condition for asymptotic stability of a closed-loop system with a robust $ H_{\infty} $ performance level is established in terms of the linear matrix inequality (LMI). Furthermore, a tracking controller, which includes observer-based feedback control, integral control, and preview feedforward compensation, is established for the original system. In particular, the tracking controller design is simplified by computing the observer and tracking controller gains simultaneously via only a one-step LMI algorithm. Finally, numerical simulation results demonstrate that the proposed controller leads to superior improvement in the output tracking performance compared with the existing methods.



    加载中


    [1] L. Li, Y. L. Yuan, Output feedback preview control for polytopic uncertain discrete-time systems with time-varying delay, Int. J. Robust Nonlinear Control, 29 (2019), 2619–2638. https://doi.org/10.1002/rnc.4524 doi: 10.1002/rnc.4524
    [2] L. Li, F. C. Liao, Robust preview control for a class of uncertain discrete-time systems with time-varying delay, ISA Trans., 73 (2018), 11–21. https://doi.org/10.1016/j.isatra.2018.01.005 doi: 10.1016/j.isatra.2018.01.005
    [3] G. S. Cai, L. W. Xu, Y. Liu, J. W. Feng, J. H. Liang, Y. B. Lu, Robust preview path tracking control of autonomous vehicles under time-varying system delays and saturation, IEEE Trans. Veh. Tech., 72 (2023), 8486–8499. https://doi.org/10.1109/TVT.2023.3250328 doi: 10.1109/TVT.2023.3250328
    [4] K. Z. Han, J. Feng, Data-driven robust fault tolerant linear quadratic preview control of discrete-time linear systems with completely unknown dynamics, Int. J. Control, 94 (2021), 49–59. https://doi.org/10.1080/00207179.2019.1581379 doi: 10.1080/00207179.2019.1581379
    [5] K. Z. Han, J. Feng, Y. Y. Li, S. Li, Reduced‐order simultaneous state and fault estimator based fault tolerant preview control for discrete‐time linear time‐invariant systems, IET Control Theory Appl., 12 (2018), 1601–1610. https://doi.org/10.1049/iet-cta.2017.1280 doi: 10.1049/iet-cta.2017.1280
    [6] K. Z. Han, J. Feng, Fault tolerant tracking control for a class of linear parameter varying systems using reduced-order simultaneous estimator and optimal preview policy, Int. J. Syst. Sci., 51 (2020), 313–333. https://doi.org/10.1080/00207721.2019.1704096 doi: 10.1080/00207721.2019.1704096
    [7] D. Wang, F. C. Liao, M. Tomizuka, Adaptive preview control for piecewise discrete-time systems using multiple models, Appl. Math. Model., 40 (2016), 9932–9946. https://doi.org/10.1016/j.apm.2016.06.046 doi: 10.1016/j.apm.2016.06.046
    [8] J. Xie, X. Xu, F. Wang, L. Chen, Modeling adaptive preview time of driver model for intelligent vehicles based on deep learning, P. I. Mech. Eng. I-J. Sys., 236 (2022), 355–369. https://doi.org/10.1177/09596518211028372 doi: 10.1177/09596518211028372
    [9] A. K. Bhatia, J. Jiang, A. Kumar, S. A. A. Shah, A. Rohra, Z. Y. Zhen, Adaptive preview control with deck motion compensation for autonomous carrier landing of an aircraft, Int. J. Adapt. Control, 35 (2021), 769–785. https://doi.org/10.1002/acs.3228 doi: 10.1002/acs.3228
    [10] Q. Z. Xu, Z. S. Wang, L. Qin, Adaptive nonlinear information fusion preview control for autonomous surface vessels subject to measurement noises and unknown input saturations, Asian J. Control, 25 (2023), 3944–3964. https://doi.org/10.1002/asjc.3088 doi: 10.1002/asjc.3088
    [11] Q. Z. Xu, Z. S. Wang, Z. Y. Zhen, Information fusion estimation-based path following control of quadrotor UAVs subjected to Gaussian random disturbance, ISA Trans., 99 (2020), 84–94. https://doi.org/10.1016/j.isatra.2019.10.003 doi: 10.1016/j.isatra.2019.10.003
    [12] Q. Z. Xu, Y. H. Zhang, Event-triggered nonlinear information fusion preview control of a two-degree-of-freedom helicopter system, Aerosp. Sci. Technol., 140 (2023), 108474. https://doi.org/10.1016/j.ast.2023.108474 doi: 10.1016/j.ast.2023.108474
    [13] X. Yu, F. C. Liao, L. Li, $H_{\infty}$ decentralised output feedback preview tracking control via state observer for a class of nonlinear disturbed interconnected discrete systems, Int. J. Control, 95 (2022), 1174–1190. https://doi.org/10.1080/00207179.2020.1842908 doi: 10.1080/00207179.2020.1842908
    [14] X. Yu, F. C. Liao, L. Li, Y. R. Lu, Observer-based decentralized robust $H_{\infty}$ output tracking control with preview action for uncertain and disturbed nonlinear interconnected systems, Asian J. Control, 24 (2022), 626–641. https://doi.org/10.1002/asjc.2539 doi: 10.1002/asjc.2539
    [15] Z. Y. Zhen, S. Y. Jiang, K. Ma, Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering, Aerosp. Sci. Technol., 81 (2018), 99–107. https://doi.org/10.1016/j.ast.2018.07.039 doi: 10.1016/j.ast.2018.07.039
    [16] H. Y. Yang, Y. C. Qin, C. L. Xiang, W. Q. Bai, B. Xu, Active suspension robust preview control by considering actuator delay, IEEE Trans. Intell. Vehicl., 8 (2023), 4263–4274. https://doi.org/10.1109/TIV.2023.3280599 doi: 10.1109/TIV.2023.3280599
    [17] R. Featherstone, A simple model of balancing in the plane and a simple preview balance controller, Int. J. Rob. Res., 36 (2017), 1489–1507. https://doi.org/10.1177/0278364917691114 doi: 10.1177/0278364917691114
    [18] X. Wang, J. H. Park, Z. C. Liu, H. L. Yang, Dynamic event-triggered control for GSES of memristive neural networks under multiple cyber-attacks, IEEE Trans. Neur. Net. Lear., 35 (2022), 7602–7611. https://doi.org/10.1109/TNNLS.2022.3217461 doi: 10.1109/TNNLS.2022.3217461
    [19] A. Rastegari A, M. M. Arefi, M. H. Asemani, Robust $H_{\infty}$ sliding mode observer-based fault-tolerant control for one-sided Lipschitz nonlinear systems, Asian J. Control, 21 (2019), 114–129. https://doi.org/10.1002/asjc.2062 doi: 10.1002/asjc.2062
    [20] K. G. Vamvoudakis, A. Mojoodi, H. Ferraz, Event-triggered optimal tracking control of nonlinear systems, Int. J. Robust Nonlinear Control, 27 (2017), 598–619. https://doi.org/10.1002/rnc.3587 doi: 10.1002/rnc.3587
    [21] N. Gasmi, M. Boutayeb, A. Thabet, M. Aoun, Enhanced LMI conditions for observer-based $H_{\infty}$ stabilization of Lipschitz discrete-time systems, Eur. J. Control, 44 (2018), 80–89. https://doi.org/10.1016/j.ejcon.2018.09.016 doi: 10.1016/j.ejcon.2018.09.016
    [22] M. Yadegar, A. Afshar, M. Davoodi, Observer-based tracking controller design for a class of Lipschitz nonlinear systems, J. Vib. Control, 24 (2018), 2112–2119. https://doi.org/10.1177/1077546317721597 doi: 10.1177/1077546317721597
    [23] M. Yadegar, M. Davoodi, Observer-based tracking controller design for quasi-one-sided Lipschitz nonlinear systems, Optim. Contr. Appl. Met., 39 (2018), 1638–1647. https://doi.org/10.1002/oca.2432 doi: 10.1002/oca.2432
    [24] C. Huang, H. L. Huang, Observer-based robust preview tracking control for a class of nonlinear systems, IET Control Theory Appl., 14 (2020), 991–998. https://doi.org/10.1049/iet-cta.2019.0922 doi: 10.1049/iet-cta.2019.0922
    [25] X. Yu, F. C. Liao, Output tracking control with preview action for a class of continuous-time Lipschitz nonlinear systems and its applications, J. Vib. Control, 26 (2020), 2081–2091. https://doi.org/10.1177/1077546320912647 doi: 10.1177/1077546320912647
    [26] G. Phanomchoeng, R. Rajamani, D. Piyabongkarn, Nonlinear observer for bounded Jacobian systems, with applications to automotive slip angle estimation, IEEE Trans. Automat. Control, 56 (2011), 1163–1170. https://doi.org/10.1109/TAC.2011.2108552 doi: 10.1109/TAC.2011.2108552
    [27] Y. Wang, R. Rajamani, D. M. Bevly, Observer design for parameter varying differentiable nonlinear systems, with application to slip angle estimation, IEEE Trans. Automat. Control, 62 (2017), 1940–1945. https://doi.org/10.1109/TAC.2016.2587385 doi: 10.1109/TAC.2016.2587385
    [28] B. Boulkroune, I. Djemili, A. Aitouche, V. Cocquempot, Robust nonlinear observer design for actuator fault detection in diesel engines, Int. J. Appl. Math. Comput. Sci., 23 (2013), 557–569. https://doi.org/10.2478/amcs-2013-0042 doi: 10.2478/amcs-2013-0042
    [29] Y. R. Lu, X. M. Zhang, Z. W. Wang, L. Qiao, Optimal containment preview control for continuous-time multi-agent systems using internal model principle, Int. J. Syst. Sci., 54 (2023), 802–821. https://doi.org/10.1080/00207721.2022.2146987 doi: 10.1080/00207721.2022.2146987
    [30] Y. H. Lan, Z. Luo, J. D. Yan, Sliding mode preview repetitive control for interconnected nonlinear systems, Circuits Syst. Signal Process., 43 (2024), 3477–3499. https://doi.org/10.1007/s00034-024-02639-9 doi: 10.1007/s00034-024-02639-9
    [31] L. Li, X. H. Meng, Y. L. Liao, Preview repetitive control for linear continuous-time system, Int. J. Control Automa. Syst., 21 (2023), 508–518. https://doi.org/10.1007/s12555-021-0807-4 doi: 10.1007/s12555-021-0807-4
    [32] N. Birla, A. Swarup, Optimal preview control: A review, Optim. Contr. Appl. Met., 36 (2015), 241–268. https://doi.org/10.1002/oca.2106 doi: 10.1002/oca.2106
    [33] Z. Y. Zhen, Research development in preview control theory and applications, Acta Auto. Sinica, 42 (2016), 172–188.
    [34] X. H. Chang, L. Zhang, J. H. Park, Robust static output feedback $H_{\infty}$ control for uncertain fuzzy systems, Fuzzy Set. Syst., 273 (2015), 87–104. https://doi.org/10.1016/j.fss.2014.10.023 doi: 10.1016/j.fss.2014.10.023
    [35] X. L. Jiang, G. H. Xia, Z. G. Feng, T. Li, $H_{\infty}$ output feedback control for stochastic systems with randomly occurring convex-bounded uncertainties and channel fadings, Asian J. Control, 22 (2020), 1589–1603. https://doi.org/10.1002/asjc.2046 doi: 10.1002/asjc.2046
    [36] A. Zemouche, M. Boutayeb, G. I. Bara, Observers for a class of Lipschitz systems with extension to $H_{\infty}$ performance analysis, Syst. Control Lett., 57 (2008), 18–27. https://doi.org/10.1016/j.sysconle.2007.06.012 doi: 10.1016/j.sysconle.2007.06.012
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(321) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog