This paper presents a new prescribed performance-based finite-time adaptive tracking control scheme for a class of pure-feedback nonlinear systems with input quantization and dynamical uncertainties. To process the input signal, a new quantizer combining the advantages of a hysteresis quantizer and uniform quantizer has been used. Radial basis function neural networks have been utilized to approximate unknown nonlinear smooth functions. An auxiliary system has been employed to estimate unmodeled dynamics by producing a dynamic signal. By introducing a hyperbolic tangent function and performance function, the tracking error was made to fall within the prescribed time-varying constraints. Using modified dynamic surface control (DSC) technology and a finite-time control method, a novel finite-time controller has been designed, and the singularity problem of differentiating each virtual control scheme in the existing finite-time control scheme has been removed. Theoretical analysis shows that all signals in the closed-loop system are semi-globally practically finite-time stable, and that the tracking error converges to a prescribed time-varying region. Simulation results for two numerical examples have been provided to illustrate the validity of the proposed control method.
Citation: Bin Hang, Weiwei Deng. Finite-time adaptive prescribed performance DSC for pure feedback nonlinear systems with input quantization and unmodeled dynamics[J]. AIMS Mathematics, 2024, 9(3): 6803-6831. doi: 10.3934/math.2024332
This paper presents a new prescribed performance-based finite-time adaptive tracking control scheme for a class of pure-feedback nonlinear systems with input quantization and dynamical uncertainties. To process the input signal, a new quantizer combining the advantages of a hysteresis quantizer and uniform quantizer has been used. Radial basis function neural networks have been utilized to approximate unknown nonlinear smooth functions. An auxiliary system has been employed to estimate unmodeled dynamics by producing a dynamic signal. By introducing a hyperbolic tangent function and performance function, the tracking error was made to fall within the prescribed time-varying constraints. Using modified dynamic surface control (DSC) technology and a finite-time control method, a novel finite-time controller has been designed, and the singularity problem of differentiating each virtual control scheme in the existing finite-time control scheme has been removed. Theoretical analysis shows that all signals in the closed-loop system are semi-globally practically finite-time stable, and that the tracking error converges to a prescribed time-varying region. Simulation results for two numerical examples have been provided to illustrate the validity of the proposed control method.
[1] | I. Kanellakopoulos, P. V. Kokotovic, A. S. Morse, Systematic design of adaptive controllers for feedback linearizable systems, 1991 American Control Conference, 1991,649–654. https://doi.org/10.23919/ACC.1991.4791451 doi: 10.23919/ACC.1991.4791451 |
[2] | D. Swaroop, J. Karl Hedrick, P. P. Yip, J. Christian Gerdes, Dynamic surface control for a class of nonlinear systems, IEEE Trans. Automat. Contr., 45 (2000), 1893–1899. https://doi.org/10.1109/TAC.2000.880994 doi: 10.1109/TAC.2000.880994 |
[3] | H. Liu, T. Zhang, X. Xia, Adaptive neural dynamic surface control of MIMO pure-feedback nonlinear systems with output constraints, Neurocomputing, 333 (2019), 101–109. https://doi.org/10.1016/j.neucom.2018.12.011 doi: 10.1016/j.neucom.2018.12.011 |
[4] | M. Chiang, L. Fu, Adaptive stabilization of a class of uncertain switched nonlinear systems with backstepping control, Automatica, 50 (2014), 2128–2135. https://doi.org/10.1016/j.automatica.2014.05.029 doi: 10.1016/j.automatica.2014.05.029 |
[5] | T. Zhang, H. Xu, Adaptive optimal dynamic surface control of strict-feedback nonlinear systems with output constraints, Int. J. Robust Nonlinear Control, 30 (2020), 2059–2078. https://doi.org/10.1002/rnc.4864 doi: 10.1002/rnc.4864 |
[6] | B. Niu, X. Liu, Z. Guo, H. Jiang, H. Wang, Adaptive intelligent control-based consensus tracking for a class of switched non-strict feedback nonlinear multi-agent systems with unmodeled dynamics, IEEE Trans. Artif. Intell., 2023, 1–11. https://doi.org/10.1109/TAI.2023.3300818 doi: 10.1109/TAI.2023.3300818 |
[7] | L. Zhao, J. Li, H. Li, B. Liu, Double-loop tracking control for a wheeled mobile robot with unmodeled dynamics along right angle roads, ISA Trans., 136 (2023), 525–534. https://doi.org/10.1016/j.isatra.2022.10.045 doi: 10.1016/j.isatra.2022.10.045 |
[8] | J. Zhai, H. Wang, J. Tao, Z. He, Observer-based adaptive fuzzy finite time control for non-strict feedback nonlinear systems with unmodeled dynamics and input delay, Nonlinear Dyn., 111 (2023), 1417–1440. https://doi.org/10.1007/s11071-022-07913-6 doi: 10.1007/s11071-022-07913-6 |
[9] | Z. Jiang, L. Praly, Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties, Automatica, 34 (1998), 825–840. https://doi.org/10.1016/S0005-1098(98)00018-1 doi: 10.1016/S0005-1098(98)00018-1 |
[10] | Y. Hua, T. Zhang, Adaptive control of pure-feedback nonlinear systems with full-state time-varying constraints and unmodeled dynamics, Int. J. Adapt. Control Signal Process., 34 (2020), 183–198. https://doi.org/10.1002/acs.3077 doi: 10.1002/acs.3077 |
[11] | T. P. Zhang, N. N. Wang, M. Z. Xia, Adaptive output feedback control of systems with unmodeled dynamics and output constraint, Control Decis., 32 (2017), 55–62. |
[12] | T. Zhang, M. Xia, J. Zhu, Adaptive backstepping neural control of state-delayed nonlinear systems with full-state constraints and unmodeled dynamics, Int. J. Adapt. Control Signal Process., 31 (2017), 1704–1722. https://doi.org/10.1002/acs.2795 doi: 10.1002/acs.2795 |
[13] | Y. Hua, T. Zhang, Adaptive neural event-triggered control of MIMO pure-feedback systems with asymmetric output constraints and unmodeled dynamics, IEEE Access, 8 (2020), 37684–37696. https://doi.org/10.1109/ACCESS.2020.2975618 doi: 10.1109/ACCESS.2020.2975618 |
[14] | X. Zhang, Y. Lin, Adaptive tracking control for a class of pure-feedback non-linear systems including actuator hysteresis and dynamic uncertainties, IET Control Theory Appl., 5 (2011), 1868–1880. https://doi.org/10.1049/iet-cta.2010.0711 doi: 10.1049/iet-cta.2010.0711 |
[15] | P. Li, N. Shlezinger, H. Zhang, B. Wang, Y. C. Eldar, Graph signal compression by joint quantization and sampling, IEEE Trans. Signal Process., 70 (2022), 4512–4527. https://doi.org/10.1109/TSP.2022.3205474 doi: 10.1109/TSP.2022.3205474 |
[16] | Z. Ning, T. Wang, K. Zhang, Dynamic event-triggered security control and fault detection for nonlinear systems with quantization and deception attack, Inf. Sci., 594 (2022), 43–59. https://doi.org/10.1016/j.ins.2022.02.019 doi: 10.1016/j.ins.2022.02.019 |
[17] | C. De Persis, F. Mazenc, Stability of quantized time-delay nonlinear systems: a Lyapunov-Krasowskii-functional approach, Math. Control Signals Syst., 21 (2010), 337–370. https://doi.org/10.1007/s00498-010-0048-1 doi: 10.1007/s00498-010-0048-1 |
[18] | T. Liu, Z. Jiang, D. J. Hill, A sector bound approach to feedback control of nonlinear systems with state quantization, Automatica, 48 (2012), 145–152. https://doi.org/10.1016/j.automatica.2011.09.041 doi: 10.1016/j.automatica.2011.09.041 |
[19] | L. Xing, C. Wen, Y. Zhu, H. Su, Z. Liu, Output feedback control for uncertain nonlinear systems with input quantization, Automatica, 65 (2016), 191–202. https://doi.org/10.1016/j.automatica.2015.11.028 doi: 10.1016/j.automatica.2015.11.028 |
[20] | X. Xia, T. Zhang, Robust adaptive quantized DSC of uncertain pure-feedback nonlinear systems with time-varying output and state constraints, Int. J. Robust Nonlinear Control, 28 (2018), 3357–3375. https://doi.org/10.1002/rnc.4087 doi: 10.1002/rnc.4087 |
[21] | M. Wang, T. Zhang, Y. Yang, Adaptive neural output feedback control for uncertain nonlinear systems with input quantization and output constraints, Int. J. Adapt. Control Signal Process., 34 (2020), 228–247. https://doi.org/10.1002/acs.3079 doi: 10.1002/acs.3079 |
[22] | W. Liu, D. W. C. Ho, S. Xu, B. Zhang, Adaptive finite-time stabilization of a class of quantized nonlinearly parameterized systems, Int. J. Robust Nonlinear Control, 27 (2017), 4554–4573. https://doi.org/10.1002/rnc.3813 doi: 10.1002/rnc.3813 |
[23] | F. Wang, B. Chen, C. Lin, J. Zhang, X. Meng, Adaptive neural network finite-time output feedback control of quantized nonlinear systems, IEEE Trans. Cybernetics, 48 (2017), 1839–1848. https://doi.org/10.1109/TCYB.2017.2715980 doi: 10.1109/TCYB.2017.2715980 |
[24] | D. Huang, T. Huang, N. Qin, Y. Li, Y. Yang, Finite-time control for a UAV system based on finite-time disturbance observer, Aerosp. Sci. Technol., 129 (2022), 107825. https://doi.org/10.1016/j.ast.2022.107825 doi: 10.1016/j.ast.2022.107825 |
[25] | Y. Li, B. Niu, G. Zong, J. Zhao, X. Zhao, Command filter-based adaptive neural finite-time control for stochastic nonlinear systems with time-varying full-state constraints and asymmetric input saturation, Int. J. Syst. Sci., 53 (2022), 199–221. https://doi.org/10.1080/00207721.2021.1943562 doi: 10.1080/00207721.2021.1943562 |
[26] | S. P. Bhat, D. S. Bernstein, Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Automat. Contr., 43 (1998), 678–682. https://doi.org/10.1109/9.668834 doi: 10.1109/9.668834 |
[27] | S. P. Bhat, D. S. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. https://doi.org/10.1137/S0363012997321358 doi: 10.1137/S0363012997321358 |
[28] | G. Chen, Y. Yang, Finite-time stability of switched nonlinear time-varying systems via indefinite Lyapunov functions, Int. J. Robust Nonlinear Control, 28 (2018), 1901–1912. https://doi.org/10.1002/rnc.3968 doi: 10.1002/rnc.3968 |
[29] | R. Yang, L. Sun, Finite-time robust control of a class of nonlinear time-delay systems via lyapunov functional method, J. Franklin Inst., 356 (2019), 1155–1176. https://doi.org/10.1016/j.jfranklin.2018.08.029 doi: 10.1016/j.jfranklin.2018.08.029 |
[30] | Y. Liu, Y. W. Jing, X. P. Liu, X. H. Li, Survey on finite-time control for nonlinear systems, Control Theory Appl., 37 (2020), 1–12. |
[31] | H. Li, S. Zhao, W. He, R. Lu, Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone, Automatica, 100 (2019), 99–107. https://doi.org/10.1016/j.automatica.2018.10.030 doi: 10.1016/j.automatica.2018.10.030 |
[32] | Y. Huang, J. Wang, F. Wang, B. He, Event-triggered adaptive finite-time tracking control for full state constraints nonlinear systems with parameter uncertainties and given transient performance, ISA Trans., 108 (2021), 131–143. https://doi.org/10.1016/j.isatra.2020.08.022 doi: 10.1016/j.isatra.2020.08.022 |
[33] | X. Jin, Adaptive fixed-time control for MIMO nonlinear systems with asymmetric output constraints using universal barrier functions, IEEE Trans. Automat. Contr., 64 (2018), 3046–3053. https://doi.org/10.1109/TAC.2018.2874877 doi: 10.1109/TAC.2018.2874877 |
[34] | J. Cai, C. Wen, L. Xing, Q. Yan, Decentralized backstepping control for interconnected systems with non-triangular structural uncertainties, IEEE Trans. Automat. Contr., 68 (2022), 1692–1699. https://doi.org/10.1109/TAC.2022.3152083 doi: 10.1109/TAC.2022.3152083 |
[35] | F. Doostdar, H. Mojallali, An ADRC-based backstepping control design for a class of fractional-order systems, ISA Trans., 121 (2022), 140–146. https://doi.org/10.1016/j.isatra.2021.03.033 doi: 10.1016/j.isatra.2021.03.033 |
[36] | X. Yu, X. Meng, X. Zheng, Y. Liu, Improved adaptive backstepping control of MPCVD reactor systems with non-parametric uncertainties, J. Franklin Inst., 360 (2023), 2182–2192. https://doi.org/10.1016/j.jfranklin.2022.09.052 doi: 10.1016/j.jfranklin.2022.09.052 |
[37] | Y. Li, K. Li, S. Tong, Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO nonstrict feedback systems, IEEE Trans. Fuzzy Syst., 27 (2018), 96–110. https://doi.org/10.1109/TFUZZ.2018.2868898 doi: 10.1109/TFUZZ.2018.2868898 |
[38] | J. Li, Y. Yang, C. Hua, X. Guan, Fixed-time backstepping control design for high-order strict-feedback non-linear systems via terminal sliding mode, IET Control Theory Appl., 11 (2017), 1184–1193. https://doi.org/10.1049/iet-cta.2016.1143 doi: 10.1049/iet-cta.2016.1143 |
[39] | L. Liu, T. Gao, Y. Liu, S. Tong, Time-varying asymmetrical BLFs based adaptive finite-time neural control of nonlinear systems with full state constraints, IEEE/CAA J. Autom. Sin., 7 (2020), 1335–1343. https://doi.org/10.1109/JAS.2020.1003213 doi: 10.1109/JAS.2020.1003213 |
[40] | C. Liu, H. Wang, X. Liu, Y. Zhou, S. Lu, Adaptive prescribed performance tracking control for strict-feedback nonlinear systems with zero dynamics, Int. J. Robust Nonlinear Control, 29 (2019), 6507–6521. https://doi.org/10.1002/rnc.4739 doi: 10.1002/rnc.4739 |
[41] | W. Shi, Observer-based adaptive fuzzy prescribed performance control for feedback linearizable MIMO nonlinear systems with unknown control direction, Neurocomputing, 368 (2019), 99–113. https://doi.org/10.1016/j.neucom.2019.08.066 doi: 10.1016/j.neucom.2019.08.066 |
[42] | X. Xia, T. Zhang, Y. Yi, Q. Shen, Adaptive prescribed performance control of output feedback systems including input unmodeled dynamics, Neurocomputing, 190 (2016), 226–236. https://doi.org/10.1016/j.neucom.2016.01.014 doi: 10.1016/j.neucom.2016.01.014 |
[43] | J. Yu, P. Shi, L. Zhao, Finite-time command filtered backstepping control for a class of nonlinear systems, Automatica, 92 (2018), 173–180. https://doi.org/10.1016/j.automatica.2018.03.033 doi: 10.1016/j.automatica.2018.03.033 |