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Abstract: This paper presents a new prescribed performance-based finite-time adaptive tracking
control scheme for a class of pure-feedback nonlinear systems with input quantization and dynamical
uncertainties. To process the input signal, a new quantizer combining the advantages of a hysteresis
quantizer and uniform quantizer has been used. Radial basis function neural networks have been
utilized to approximate unknown nonlinear smooth functions. An auxiliary system has been employed
to estimate unmodeled dynamics by producing a dynamic signal. By introducing a hyperbolic tangent
function and performance function, the tracking error was made to fall within the prescribed time-
varying constraints. Using modified dynamic surface control (DSC) technology and a finite-time
control method, a novel finite-time controller has been designed, and the singularity problem of
differentiating each virtual control scheme in the existing finite-time control scheme has been removed.
Theoretical analysis shows that all signals in the closed-loop system are semi-globally practically finite-
time stable , and that the tracking error converges to a prescribed time-varying region. Simulation
results for two numerical examples have been provided to illustrate the validity of the proposed control
method.
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1. Introduction

Numerous nonlinear challenges arise in the realms of production and societal life, rendering
conventional linear control theories and methods inadequate as tools to address these nonlinear
control issues. Since Kanellakopoulos et al. [1] and Swaroop et al. [2] put forward the backstepping
and dynamic surface control (DSC) design, the two design methods have been widely used in the
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controller design of nonlinear systems [3–5]. In contrast to backstepping design, DSC offers a simpler
alternative, circumventing the issue of over-parameterization that is often associated with conventional
backstepping and streamlining the overall controller design process.

Unmodeled dynamics are prevalent in practical production and daily life. Modeling errors often
arise during the system modeling process, leading to adverse effects on system stability [6–8]. In
the work of Jiang and Praly [9], unmodeled dynamics was estimated by using measurable dynamic
signals, and the assumption that unmodeled dynamics was exponentially input-state-practically stable
(exp-ISpS). The work conducted by Hua and Zhang [10] effectively addressed a category of strict
feedback systems that are characterized by unmodeled dynamics and time-varying full-state constraints
through the application of the DSC technique. This approach demonstrated exceptional dynamic
performance when handling complex system dynamics and evolving state limitations. In the work
of Zhang et al. [11], a dynamic signal was introduced to deal with the dynamical uncertainties
associated with adaptive output feedback systems with output constraints and unmodeled dynamics.
In the work of Zhang et al. [12], the dynamic signals generated by the auxiliary system were used to
process unmodeled dynamics for a class of strict-feedback nonlinear systems with full state constraints.
In [13], adaptive triggered control for multiple input multiple output (MIMO) systems with unmodeled
dynamics and output constraints was proposed in the work by Hua and Zhang. A class of pure-feedback
systems with unmodeled dynamics were studied in the work by Zhang and Lin [14]. References [9–14]
extensively discuss the impact of unmodeled dynamics on the system. However, it is noteworthy that
these references do not explicitly consider the influence of input quantization on the overall system.

Signal quantization involves the transformation of a continuous signal into a discrete signal with
a limited set of values after passing through a quantizer [15, 16]. In advanced fields such as medical,
aerospace, and military applications, the application of quantization control has become increasingly
prevalent. The accurate and efficient quantification of signals plays a crucial role in the advancement
of quantitative control methodologies. To date, substantial research efforts have been dedicated to
the study of input quantization, illuminating its significance in various domains and the need for robust
and effective quantization techniques. So far, there are many studies researches on input quantification.
In [17], a class of nonlinear systems with quantization time delay was studied. Under the assumption
that the sector region of the quantizer was bounded, the stability problem of strict-feedback nonlinear
systems with state quantization was studied in the work of Liu et al. [18]. Combining the advantages
of the hysteresis quantizer and uniform quantizer, Xing et al. proposed a new quantizer, which is
an extension of the existing quantizer [19]. In the works of Xia and Zhang [20], a novel controller
compensation was designed to eliminate the influence of input quantization on the system. On the
basis of the results from previous works [20], in [21], to simplify the difficulty of controller design,
the quantizer error was further linearized. References [22, 23] primarily focus on addressing a specific
category of input quantization problems within the context of finite-time control.

Finite-time control has witnessed substantial advancements in recent decades [24, 25]. A defining
characteristic of finite-time control is its ability to bring the system’s state to equilibrium within a finite
duration, after which the system remains in equilibrium. In the work of Bhat and Bernstein [26, 27],
the Lyapunov theory and homogeneous system theory of finite-time stability were first proposed,
and the flutter phenomenon caused by the controller was solved. On this basis, many finite-time
stability problems of nonlinear systems were discussed. In the works of Chen and Yang [28] and
Yang and Sun [29], the finite-time stability of time-varying delay systems was successfully addressed
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through the application of Lyapunov-Krasovskii functions. However, it is important to note that the
discussions in these works did not cover specified performance and input quantization aspects. In the
work of Liu et al. [30], the finite-time control methods of nonlinear systems were systematically and
perfectly presented. The finite-time problem was investigated for a class of strict-feedback nonlinear
systems in the work of Li et al. [31]. References [32, 33] predominantly delve into finite-time control
methodologies applied to diverse systems by using the backstepping design. It is worth noting that,
while effective, the backstepping technique can give rise to computational complexity issues [34–36].
Additionally, the virtual control law is derived repetitively in the virtual control design, leading to
an increase in the structural complexity of the controller as the system’s order rises. As a result,
addressing these challenges becomes imperative for the widespread applicability and scalability of
finite-time control techniques. References [37,38] adopted DSC to avoid the “complexity” problem in
conventional backstepping, and they brought about new ideas for the design of finite-time controllers.
MIMO non-strict feedback systems were studied, but they still had the problem of singularity in the
work. Reference [38] adopted a DSC method and presented a new form of first-order filter. However,
the symbolic function was used in the design of the virtual controller, which made the virtual control
law non-differentiable and led to theoretical errors in the following process. In a study conducted by
Liu et al. [39], the investigation focused on finite-time control for nonlinear systems. Notably, Young’s
inequality was employed as a substitute for a conventional inequality theorem commonly found in
the finite-time literature. This innovative approach aimed to enhance the efficiency and analytical
tractability of finite-time control methodologies in the context of nonlinear systems.

The prescribed performance function (PPF) requires that the system satisfies the conditions for
instantaneity and stability performance. In the research conducted by Liu et al. [40], an adaptive
PPF tracking controller was formulated, leveraging the backstepping technique as its foundational
design methodology. By using the properties of the bounds of the hyperbolic tangent function, the
error transformation was carried out, which provided a new idea for the study of PPFs in the work
of Shi [41]. Xia et al. [42] used linear mapping to transform the error and realized the prescribed
performance tracking control.

Inspired by the above literature, this paper focuses on the finite-time adaptive prescribed
performance DSC for pure-feedback nonlinear systems featuring unmodeled dynamics and input
quantization. A novel control strategy is proposed, and the primary contributions can be summarized
as follows:

(1) This paper introduces a novel finite-time adaptive tracking control scheme for a specific class of
pure-feedback nonlinear systems characterized by input quantization and dynamical uncertainties.
A hybrid quantizer, amalgamating the advantages of a hysteresis quantizer and a uniform
quantizer, is employed to address the input signal.

(2) The proposed control scheme incorporates the hyperbolic tangent function and a performance
function to ensure that the tracking error adheres to prescribed time-varying constraints. The
singularity problem of differentiating each virtual control in the existing finite-time control
scheme [22, 32, 37] is removed by constructing an appropriate unknown continuous function at
each step of recursion.

(3) Theoretical analysis demonstrates the semi-global practical finite-time stability (SGPFTS) of
all signals in the closed-loop system, with the tracking error converging to a prescribed time-
varying region. To validate the efficacy of the proposed control method, simulation results from
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two numerical examples are provided, illustrating its applicability and robustness in real-world
scenarios.

The remaining sections of this paper are organized as follows. Section 2 provides the problem
statement and some preparatory work, such as radial basis function (RBF) neural networks and
quantization design. Sections 3 and 4 present the error transformation and adaptive controller design.
Section 5 outlines the main results of this paper. The portion based on MATLAB/SIMULINK is
covered in Section 6. Finally, the conclusion and prospects for future work are discussed in Section 7.

2. Problem statement and preliminaries

Consider the following pure-feedback nonlinear systems
~̇ = Q(~, x, t),
ẋi = fi (x̄i, xi+1) + di(~, x, t), i = 1, . . . , n,
ẋn = fn (x̄n) + q(u) + dn(~, x, t), n ≥ 2,
y = x1,

(2.1)

where x̄i = [x1, ..., xi]T ∈ Ri(i = 1, 2, ..., n) denotes the state vectors of system (2.1); ~ ∈ Rn0 represents
the unmodeled dynamics; Q(~, x, t) is an unknown Lipschitz function; y ∈ R represents the system
output; u ∈ R is the control input; fi(x̄i) denotes an unknown smooth function; q(u) is the quantized
signal, and di(~, x, t) is the unknown disturbance.

The control objective is to design a controller u and quantizer q(u) so that the output can track the
desired trajectory and the tracking error can converge to a preset area in finite-time. Meanwhile, all
signals of the closed-loop system exhibit SGPFTS.

Definition 1. [9] For system ~̇ = Q(~, x, t), if there exist functions ᾱ1 and ᾱ2 of class K∞ and a
Lyapunov function V0(ξ) such that

ᾱ1(‖~‖) ≤ V0(~) ≤ ᾱ2(‖~‖) (2.2)

and if there exist two known constants c > 0, d ≥ 0 and a class K∞ function Λ(·) such that

∂V0(~)
∂~

Q(~, x, t) ≤ −cV0(~) + Λ (|x1|) + d (2.3)

then the unmodeled dynamics is said to be exp-ISpS.

Assumption 1. [11] The desired trajectory vector satisfies the xd = [yd, ẏd, ÿd]T ∈ Ωd, where Ωd =

{xd : y2
d + ẏ2

d + ÿ2
d ≤ B0}, |yd| ≤ B1, and B0, B1 are known positive constants.

Assumption 2. [20] For unknown disturbance di(ξ, x, t), i = 1, 2, ..., n, there are an unknown non-
negative continuous function ∆i1(·) and an unknown non-negative continuous monotonic increasing
function ∆i2(·) satisfying the following inequality:

|di(~, x, t)| ≤ ∆i1 (‖x̄i‖) + ∆i2(‖~‖) (2.4)

where i = 1, 2 . . . n and ‖·‖ stands for the Euclidean norm of a vector or the 2-norm of a matrix.
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Lemma 1. [9] If V0(ξ) is an exp-ISpS Lyapunov function for a system ~̇ = Q(~, x, t), then, for any
constants c̄ f ∈ (0, c), the initial condition ~0 = ~ (t0) and r0 > 0. For any continuous function Λ̄ such
that Λ̄(|x1|) ≥ Λ(|x1|), there exist a finite T0 = max

{
0, ln [V0 (~0) /r0] /

(
c − c̄ f

)}
≥ 0, a non-negative

function D(t0, t), defined for all t ≥ t0, and a signal described by

ṙ = −c̄ f r + Λ̄(|x1|) + d (2.5)

such that D(t0, t) = 0 for t ≥ t0 + T0 and V0(~) ≤ r(t) + D (t0, t). Without loss of generality, Λ̄(|x1|) =

Λ(|x1|).

Lemma 2. [43] For the nonlinear system ẋ = f (x), if there exist a positive definite C1 functions
V(x) : Rn → R, a compact set Σ ⊂ Rn, class K∞ functions ς1, ς2, and some scalars α > 0, 1

2 ≤ q <

1, 0 < C < ∞, 0 < v < 1, and 0 < β < 1, for any x (t0) = x0 ∈ Σ such that ς1(‖x‖) ≤ V(x) ≤ ς2(‖x‖) and
the solution of ẋ = f (x) with initial value x (t0) = x0 ∈ Σ satisfies

V̇(x) ≤ −αV(x) − βVq(x) + C (2.6)

then the nonlinear system ẋ = f (x) exhibits SGPFTS for the setting time

Tr = t0 +
1

α(1 − q)
ln
αV1−q (x0) + vβ

vβ
.

Lemma 3. [38] For any η1, . . . , ηN ∈ R+ and 0 < s ≤ 1, then N∑
i=1

ηi

s

≤

N∑
i=1

ηs
i ≤ N1−s

 N∑
i=1

ηi

s

. (2.7)

Lemma 4 (Young’s inequality). [37] If ∀ϕ, ψ ∈ R, ε > 0, a > 1, b > 1, and 1
a + 1

b = 1, then the
following inequality holds:

|ϕψ| ≤
εa

a
|ϕ|a +

1
bεb |ψ|

b. (2.8)

Particularly, when a = 2, b = 2, and ε = 1, we have that ϕψ ≤ 1
2ϕ

2 + 1
2ψ

2; when a = 2, b = 2, and
ε = 1

√
2
, we have that ϕψ ≤ 1

4ϕ
2 + ψ2.

2.1. Radial basis function neural networks

Using radial basis function neural networks θ∗Ti φi (Zi) to approximate the continuous function Φi (Zi)
on the compact set ΠZi , then

Φi (Zi) = θ∗Ti φi (Zi) + εi (Zi) , (2.9)

where Z1 =
[
x̄T

2 , z1, yd, ẏd, $, $̇, kc(t), k̇c(t), r
]T
,Zi =

[
x̄T

i+1, zi, yi, r
]T
, i = 2, . . . , n, the basis function

vectors φi (Zi) =
[
ϕi1 (Zi) , . . . , ϕili (Zi)

]T
∈ Rli , and the basis functions ϕi, j (Zi) are selected as Gaussian

functions as follows:

ϕi, j (Zi) = e
−

(Zi−µi j)T (Zi−µi j)
φ2

i j . (2.10)

φi j and µi j are respectively, the width and center of the Gaussian functions, and i = 1, . . . , n; j =

1, . . . , li, li is the number of nodes of the neural networks. The ideal weights θ∗i are defined as follows:

θ∗i = arg min
θi∈Rli

 sup
Zi∈ΩZi

∣∣∣θT
i φi (Zi) − Φi (Zi)

∣∣∣ . (2.11)
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2.2. Quantizer design

In this paper, a new quantizer that combines a hysteresis quantizer with a uniform quantizer not
only avoids quantization signal chatter, it also keeps the upper bound of quantization error constant.
The new quantizer was proposed by Wang et al. [21], and it is described as follows:

q(u) =

 qh(uth) + Int
[

u−uth
ῡ

+ κ(uth)
]
ῡ, |u| ≥ uth,

qh(u), |u| < uth,
(2.12)

where

qh(u) =



uisgn(u),
ui

1+δ
< |u| < ui, u̇ < 0, or

ui < |u| ≤ ui
1−δ , u̇ > 0,

ui(1 + δ)sgn(u),
ui < |u| ≤ ui

1−δ , u̇ < 0, or
ui

1−δ < |u| <
ui(1+δ)

1−δ , u̇ > 0,

0,
0 ≤ |u| < umin

1+δ
, or

umin
1+δ

< |u| ≤ umin, u̇ > 0,
qh(u(t−)), u̇ = 0,

(2.13)

κ(uth) =

{
1, qh(uth) < uth,

0, qh(uth) ≥ uth.
(2.14)

ui = p1−iumin, i = 1, 2, . . . n, umin > 0 and 0 < p < 1 determine the quantization density of qh(u) and
δ =

1−p
1+p , qh(u) is in the set U = {0,±ui,±ui(1 + δ)}. Int[d] stands for the maximum integer which is

less than or equal to d. The design parameter ῡ ≥ |qh (uth) − uth| determines the quantization density of
the uniform quantizer, uth which is a designed normal number and the threshold for switching between
two quantizers. The quantization error can be obtained by the new quantizer as follows:

∣∣∣∆q

∣∣∣ ≤ {
v̄, |u| ≥ uth,

δuth + (1 − δ)umin, |u| < uth.
(2.15)

It is obvious that the quantization error ∆q of the new quantizer is bounded for any u, and that there
exists a positive constant d such that

∣∣∣∆q

∣∣∣ ≤ d, where d = max {v̄, δuth + (1 − δ)umin}. According to
∆q(u) = q(u) − u, we can conclude that

q(u) = u + ∆q(u). (2.16)

3. Error transformation

Define the PPF $(t) as follows:

$(t) = ($0 −$∞) e−k0t +$∞ (3.1)

where $(t) is a positive decreasing smooth function, and $0, $∞ and k0 are the positive constants.
The tracking error is defined as follows:

e1 = y − yd. (3.2)
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In this section, the control signal u is designed to make the following inequality hold:

− kc(t)$ < e1 < kc(t)$ (3.3)

According to the control target in this paper, the tracking error is in the prescribed region described
by Eq (3.3).

Let

S =
1
2

log
kc(t) + e1

$

kc(t) − e1
$

. (3.4)

Inverse transformation of the coordinates is given as

e1

$
= kc(t) tanh S . (3.5)

Then

Ṡ =
1

kc(t)$
(
1 − tanh2 S

) ė1 −
e1$̇

$2kc(t)
(
1 − tanh2 S

) − k̇c(t) tanh S

kc(t)
(
1 − tanh2 S

) . (3.6)

Let

m(t) =
1

kc(t)$
(
1 − tanh2 S

) > 0, (3.7)

n(t) = −
e1$̇

$2kc(t)
(
1 − tanh2 S

) − k̇c(t) tanh S

kc(t)
(
1 − tanh2 S

) . (3.8)

Therefore, Eq (3.6) can be rewritten as follows:

Ṡ = m(t)ė1 + n(t). (3.9)

4. Adaptive control design

Let Fi (x̄i+1) = fi (x̄i, xi+1)− xi+1, i = 1, . . . , n−1, Fn (x̄n) = fn (x̄n); then, system (2.1) can be changed
into the following form: 

~̇= Q(~, x, t),
ẋi = Fi(x̄i+1) + xi+1 + di(~, x, t),
ẋn = Fn(x̄n) + q(u) + dn(~, x, t),
y = x1.

(4.1)

To facilitate the controller design, the following coordinate changes are introduced:{
z1 = S ,
zi = xi − ωi, i = 2, . . . , n.

(4.2)

where ωi is the output of the nonlinear filter with input ~i−1, i = 2, . . . , n.
Define some symbols as follows: sig(·)ϑ = |·|ϑsgn(·), λi =

∥∥∥θ∗i ∥∥∥2
, λ̃i = λ̂i − λi, z̄i = [z1, . . . , zi]T , ȳ j =[

y2, . . . , y j

]T
, λ̂i =

[
λ̂1, . . . , λ̂i

]T
, 1 ≤ i ≤ n, 2 ≤ j ≤ n, where λ̂i denotes the estimation of λi, y j =

ω j − ~ j−1.
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Step 1. Define the first dynamic surface as follows:

z1 = S . (4.3)

The time derivative of z1 is given by

ż1 = m(t) (F1 (x̄2) + y2 + z2 + ~1 + d1(t, ~, x) − ẏd) + n(t). (4.4)

Select V1 = 1
2z2

1 + 1
2 λ̃

2
1 as the Lyapunov function; the time derivative of V1 is given by

V̇1 = z1
[
m(t) (F1 (x̄2) + y2 + z2 + ~1 + d1(t, ~, x) − ẏd) + n(t)

]
+ λ̃1

˙̂λ1. (4.5)

Using Lemmas 1 and 4 and Assumption 2, it follows that

z1m(t)d1(t, ~, x) ≤ z1m(t)[∆11(|x1|) + ∆12(‖~‖)]

≤ z2
1m2[∆11(|x1|) + ∆12 ◦ ᾱ1(r + D0)]2 +

1
4
,

(4.6)

z1z2m(t) ≤
1
4

z2
1m2 + z2

2, (4.7)

z1y2m(t) ≤
1
4

z2
1m2 + y2

2. (4.8)

Substituting Eqs (4.6)–(4.8) into Eq (4.5), we have

V̇1 ≤z1[m(F1(x̄2) + ~1 − ẏd + z1m[∆11(|x1|) + ∆12 ◦ ᾱ1(r + D0)]2

+n(t)] + λ̃1
˙̂λ1 +

1
4

+
1
2

m2z2
1 + y2

2 + z2
2.

(4.9)

Let
Φ1 (Z1) = mF1 (x̄2) − mẏd + z1m2 [∆11 (|x1|) + ∆12 ◦ ᾱ1 (r + D0)]2 + n(t) + |z1|

2q−1

where Z1 =
[
x̄T

2 , z1, yd, ẏd, $, $̇, kc(t), k̇c(t), r
]T

and 0.5 ≤ q < 1; then,

V̇1 ≤ z1

[
θ∗T1 φ1 (Z1) + m~1 − |z1|

2q−1
)]

+ z1ε1 + λ̃1
˙̂λ1 +

1
4

+
1
2

m2z2
1 + y2

2 + z2
2. (4.10)

Using Young’s inequality yields

z1θ
∗T
1 φ1 (Z1) ≤

‖φ1 (Z1)‖2 z2
1λ1

2a2
1

+
a2

1

2
(4.11)

where a1 is a positive constant.
Therefore, Eq (4.10) can be rewritten as follows:

V̇1 ≤z1(
‖φ1(Z1)‖2z1λ1

2a2
1

+ m~1 − |z1|
2q−1) + λ̃1

˙̂λ1 +
1
4

+
1
2

m2z2
1 + y2

2 + z2
2 +

a2
1

2
+ z1ε1. (4.12)

AIMS Mathematics Volume 9, Issue 3, 6803–6831.



6811

The virtual control law is constructed as follows:

~1 = −
1
m

((k1 + 1 +
1
2

m2)z1 +
‖φ1(Z1)‖2z1λ̂1

2a2
1

). (4.13)

Design the adaptive law of λ̂1 as follows:

˙̂λ1 =
‖φ1(Z1)‖2z2

1

2a2
1

− σ1λ̂1, (4.14)

where k1, a1 are positive design constants.
Substituting Eqs (4.13) and (4.14) into Eq (4.12), we have

V̇1 ≤ −k1z2
1 − |z1|

2q + y2
2 + z2

2 − σ1λ̃1λ̂1 +
a2

1

2
+

1
4
− z2

1 + z1ε1. (4.15)

The non-negative continuous function δ1(z̄2, λ̂1, yd, ẏd, y2, r, kc(t), k̇c(t)) satisfies

|ε1(Z1)| ≤ δ1(z̄2, λ̂1, yd, ẏd, y2, r, kc(t), k̇c(t)).

Based on Young’s inequality, we further get

z1ε1 ≤ z2
1 +

1
4
δ2

1, (4.16)

−σ1λ̃1λ̂1 ≤ −
σ1

2
λ̃2

1 +
σ1

2
λ2

1 ≤ −σ1
1 − q

2
λ̃2

1 +
σ1

2
λ2

1 − σ1
q
2
λ̃2

1. (4.17)

Therefore, we obtain

V̇1 ≤ −k1z2
1 − |z1|

2q + y2
2 + z2

2 − σ1
1 − q

2
λ̃2

1 +
σ1

2
λ2

1 − σ1
q
2
λ̃2

1 +
a2

1

2
+

1
4

+
1
4
δ2

1. (4.18)

Let x = λ̃
2q
1 , y = 1, a = 1

q > 1, and b = 1
1−q . According to Lemma 4, we obtain

λ̃
2q
1 ≤ q

(
λ̃

2q
1

) 1
q

+ (1 − q) = qλ̃2
1 + (1 − q). (4.19)

Therefore

−
σ1qλ̃2

1

2
≤ −

σ1λ̃
2q
1

2
+
σ1(1 − q)

2
. (4.20)

Substituting Eq (4.20) into Eq (4.15), we have

V̇1 ≤ − k1z2
1 − |z1|

2q + y2
2 + z2

2 − σ1
1 − q

2
λ̃2

1 +
σ1

2
λ2

1 −
σ1λ̃

2q
1

2

+
σ1(1 − q)

2
+

a2
1

2
+

1
4

+
1
4
δ2

1.

(4.21)

Inspired by Li et al. in [38], the nonlinear filter ω2 is designed as follows:

τ2ω̇2 = sig (~1 − ω2)2q−1 + sig (~1 − ω2) , (4.22)
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i.e.,

−ω̇2 =
1
τ2
|y2|

2q−1 sgn (y2) +
1
τ2
|y2| sgn (y2) ≤

1
τ2

i

|y2|
4q−2 +

1
τ2

2

y2
2 +

1
2
.

where ~1 and ω2 are the input and output of the filter, respectively, and τ2 is a positive constant.

Step 2. (2 ≤ i ≤ n − 1). Since zi = si − ωi, the time derivative of zi is given by

żi = Fi (x̄i+1) + yi+1 + zi+1 + ~i − ω̇i + di(t, ~, x). (4.23)

Choose Vi = Vi−1 + 1
2z2

i + 1
2 λ̃

2
i + 1

2y2
i ; the time derivative of Vi can be obtained as follows

V̇i = V̇i−1 + ziżi + λ̃i
˙̂λi + yiẏi

= V̇i−1 + zi
[
Fi (x̄i+1) + yi+1 + zi+1 + ~i − ω̇i + di(t, ~, x)

]
+ λ̃i

˙̂λi + yiẏi.
(4.24)

Substituting Eq (4.22) into Eq (4.24), we obtain

V̇i =V̇i−1 + ziżi + λ̃i
˙̂λi + yiẏi

=V̇i−1 + zi

[
Fi (x̄i+1) + yi+1 + zi+1 + ~i + di(t, ~, x) +

1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2

]
+ λ̃i

˙̂λi + yiẏi.
(4.25)

From Assumption 2 and Lemma 1, and by using Young’s inequality, we get

zidi (t, ~, s̄n) ≤ zi [∆i1 (‖x̄i‖) + ∆i2(‖~‖)] ≤ z2
i

[
∆i1 (‖x̄i‖) + ∆i2 ◦ ᾱ

−1
1 (r + D0)

]2
+

1
4
, (4.26)

zizi+1 ≤
1
4

z2
i + z2

i+1, (4.27)

ziyi+1 ≤
1
4

z2
i + y2

i+1. (4.28)

From Eqs (4.26)–(4.28), we know that

V̇i ≤

i−1∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

i−1∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

i−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+

3
2

z2
i + y2

i + zi
[
Fi (x̄i+1) + yi+1 + zi+1

+~i +
1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2

+ zi

(
∆i1 (‖x̄i‖) + ∆i2 ◦ ᾱ

−1
1 (r + D0)

)2
]

+ λ̃i
˙̂λi + yiẏi + z2

i+1 + y2
i+1 +

1
4
.

(4.29)

Let
Φi (Zi) =Fi (x̄i+1) + yi+1 + zi+1 + |zi|

2q−1

+
1
τ2

i

|yi|
4p−2 +

1
τ2

i

y2
i +

1
2

+ zi [∆i1 (‖x̄i‖) + ∆i2 ◦ ᾱ1 (r + D0)]2 ,
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where Zi =
[
x̄T

i+1, zi, yi, r
]T

. Therefore, we have

V̇i ≤

i−1∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

i−1∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

i−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+

3
2

z2
i + y2

i +
1
4

+ zi

[
θ∗Ti φi (Zi) + εi + ~i − |zi|

2q−1
]

+ λ̃i
˙̂λi + yiẏi + z2

i+1 + y2
i+1.

(4.30)

Using Young’s inequality yields

ziθ
∗T
i φi (Zi) ≤

‖φi (Zi)‖2 z2
i λi

2a2
i

+
a2

i

2
, (4.31)

where ai > 0 is a design constant.
Therefore, Eq (4.30) can be changed as follows:

V̇i ≤

i−1∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

i−1∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]
+

1
4

+

i−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+

3
2

z2
i +

a2
i

2

+ zi

[
‖φi (Zi)‖2 ziλi

2a2
i

+ ~i − |zi|
2q−1

]
+ λ̃i

˙̂λi + yiẏi + z2
i+1 + ziεi.

(4.32)

Construct the virtual control law ~i as follows:

~i = −

(
ki +

5
2

)
zi −
‖φi (Zi)‖2 ziλ̂i

2a2
i

, (4.33)

˙̂λi =
‖φi (Zi)‖2 z2

i

2a2
i

− σiλ̂i, (4.34)

where ki, σi are positive design constants.
Substituting Eqs (4.33) and (4.34) into Eq (4.32), we have
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V̇i ≤

i∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

i∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]
+ yiẏi + z2

i+1 + y2
i+1

+

i−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+ y2

i − z2
i + ziεi +

i−1∑
j=1

1
4
δ2

j .

(4.35)

The non-negative continuous function δi

(
z̄i+1, ȳi+1, λ̂i, yd, ẏd, r

)
satisfies

|εi (Zi)| ≤ δi

(
z̄i+1, ȳi+1, λ̂i, yd, ẏd, r

)
.

Using Young’s inequality yields

ziεi ≤ z2
i +

1
4
δ2

i . (4.36)

Therefore, we have

V̇i ≤

i∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

i∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]
+ yiẏi + z2

i+1 + y2
i+1

+

i−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+ y2

i .

(4.37)

Design a nonlinear filter ωi+1 as follows:

ω̇i+1 =
1
τi+1

sig (~i − ωi+1)2q−1 +
1
τi+1

sig (~i − ωi+1) . (4.38)

The nonnegative continuous function ηi+1

(
z̄i+2, ȳi+2, λ̂i+1, yd, ẏd, ÿd, r, kc(t), k̇c(t), k̈c(t), $, $̇, $̈

)
satisfies ∣∣∣−~̇i

∣∣∣ ≤ ηi+1

(
z̄i+2, ȳi+2, λ̂i+1, yd, ẏd, ÿd, r, kc(t), k̇c(t), k̈c(t), $, $̇, $̈

)
. (4.39)

From Eqs (4.38) and (4.39, we obtain

yi+1ẏi+1 = yi+1

(
ω̇i+1 − ~̇i

)
= −

1
τi+1
|yi+1|

2q
−

1
τi+1

y2
i − yi+1~̇i

≤ −
1
τi+1
|yi+1|

2q
−

1
τi+1

y2
i+1 + y2

i+1 +
1
4
η2

i+1.

(4.40)
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Therefore, we obtain

V̇i ≤

i∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

i∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]
+ z2

i+1 + y2
i+1

+

i∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
.

(4.41)

Step n. Since zn = sn − ωn, the time derivative of zn is given by

żn = Fn (x̄n) + u + ∆q(u) + dn(~, x, t) − ω̇n. (4.42)

Let Vn = Vn−1 + 1
2z2

n + 1
2 λ̃

2
n + 1

2y2
n; the time derivative of Vn is given by

V̇n = V̇n−1 + znżn + λ̃n
˙̂λn + ynẏn

= V̇n−1 + zn

[
Fn (x̄n) + u + ∆q(u) + dn(~, x, t) − ω̇n

]
+ λ̃n

˙̂λn + ynẏn.
(4.43)

Substituting Eq (4.42) into Eq (4.43), we obtain

V̇n ≤ V̇n−1 + zn

[
Fn (x̄n) + u + ∆q(u) + dn(~, x, t)

+
1
τ2

n
|yn|

4q−2 +
1
τ2

n
y2

n +
1
2

]
+ λ̃n

˙̂λn + ynẏn.
(4.44)

From Assumption 2 and Lemma 1, and by using Young’s inequality, we get

zndn(t, ~, x) ≤ zn [∆n1 (‖x̄n‖) + ∆n2(‖~‖)]

≤ z2
n

[
∆n1 (‖x̄n‖) + ∆n2 ◦ ᾱ

−1
1 (r + D0)

]2
+

1
4
.

(4.45)

zn∆q(u) ≤
1
2

z2
n +

1
2

d2. (4.46)

From Eqs (4.44)–(4.46), we know that

V̇n ≤ V̇n−1 + zn

{
Fn (x̄n) + u + ∆q(u) + zn

[
∆n1 (‖x̄n‖) + ∆n2 ◦ ᾱ

−1
1 (r + D0)

]2

+
1
τ2

n
|yn|

4q−2 +
1
τ2

n
y2

n +
1
2

}
+ λ̃n

˙̂λn + ynẏn +
1
4

+
1
2

z2
n +

1
2

d2.
(4.47)

Let
Φn (Zn) = Fn (x̄n) + zn [∆n1 (‖x̄n‖) + ∆n2 ◦ ᾱ1 (r + D0)]2 + |zn|

2q−1

+
1
τ2

n
|yn|

4q−2 +
1
τ2

n
y2

n +
1
2
,

where Zn =
[
x̄T

n , zn, yn, r
]T

.
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Therefore, we have

V̇n ≤V̇n−1 + zn

(
θ∗Tn φn (Zn) + εn + u

− |zn|
2q−1

)
+ λ̃n

˙̂λn + ynẏn +
1
4

+
1
2

z2
n +

1
2

d2

≤

n−1∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n−1∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]
+ y2

n

+

n−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+ zn

[
θ∗Tn φn (Zn) + εn

+u − |zn|
2q−1

]
+ λ̃n

˙̂λn + ynẏn +
1
4

+
3
2

z2
n +

1
2

d2.

(4.48)

Using Young’s inequality yields

znθ
∗T
n φn (Zn) ≤

‖φn (Zn)‖2 z2
nλn

2a2
n

+
a2

n

2
, (4.49)

where an > 0 is a design constant.
Therefore, Eq (4.48) can be transformed into the following form:

V̇n ≤

n−1∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n−1∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

n−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+

3
2

z2
n + y2

n

+ zn

[
‖φn (Zn)‖2 znλn

2a2
n

+u − |zn|
2q−1

]
+ λ̃n

˙̂λn + ynẏn +
1
4

+
1
2

d2 +
a2

n

2
+ znεn.

(4.50)

Construct the control signal u as follows:

u = −

(
kn +

5
2

)
zn −

‖φn (Zn)‖2 znλ̂n

2a2
n

. (4.51)

The updating law of λ̂n is designed as follows:

˙̂λn =
‖φn (Zn)‖2 z2

n

2a2
n

− σnλ̂n, (4.52)
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where kn, σn are positive design constants. Substituting Eqs (4.51) and (4.52) into Eq (4.50), we have

V̇n ≤

n∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n∑
j=1

[
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

n−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+ y2

n

+ ynẏn − z2
n +

1
2

d2 + znεn +

n−1∑
j=1

1
4
δ2

j .

(4.53)

The non-negative continuous function δn

(
z̄n, ȳn, λ̂n, yd, ẏd, r

)
satisfies

|εn (Zn)| ≤ δn

(
z̄n, ȳn, λ̂n, yd, ẏd, r

)
.

Using Young’s inequality yields

znεn ≤ z2
n +

1
4
δ2

n. (4.54)

Therefore, we have

V̇n ≤

n∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

n−1∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+ y2

n + ynẏn +
1
2

d2.

(4.55)

The nonlinear filter is designed as follows:

ω̇n = −
1
τn
|yn|

2q−1 sgn (yn) −
1
τn
|yn| sgn (yn) , (4.56)

where yn = ωn − ~n−1, and τn is a positive design constant.

The non-negative continuous function ηn

(
s̄n, z̄nȳn, λ̂n, yd, ẏd, ÿd, r, kc(t), k̇c(t), k̈c(t), $, $̇, $̈

)
satisfies

∣∣∣−~̇n−1

∣∣∣ ≤ ηn

(
s̄n, z̄n, ȳn, λ̂n, yd, ẏd, ÿd, r, kc(t), k̇c(t), k̈c(t), $, $̇, $̈

)
(4.57)

From Eqs (4.56) and (4.57), we obtain

ynẏn = yn

(
ω̇n − ~̇n−1

)
= −

1
τn
|y|2q

n −
1
τn

y2
n − yn~̇n−1 ≤ −

1
τn
|y|2q

n −
1
τn

y2
n + y2

n +
1
4
η2

n. (4.58)
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Therefore, we have

V̇n ≤

n∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

n∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+

1
2

d2.

(4.59)

5. Main results

Define the whole Lyapunov function Vn and two compact sets Ω,Ωkc as follows:

Vn =

n∑
j=1

1
2

z2
j +

n∑
j=1

1
2
λ̃2

j +

n∑
j=2

1
2

y2
j , (5.1)

Ω =

{[
z̄T

n , ȳ
T
n , λ̂

T

n , r
]T

: Vn ≤ P
}
, (5.2)

Ωkc =

{[
kc, k̇c, k̈c

]T
: k2

c + k̇2
c + k̈2

c ≤ Pkc

}
, (5.3)

where P and Pkc > 0. The maximum values of the continuous functions ηi(·) and δi(·) on the compact
set Ω ×Ωkc are Mi and Ni, respectively.

Theorem 1. Consider the closed-loop system which consists of the plant (1) under Assumptions 1
and 2, the control law given by Eq (4.51), virtual control laws given by Eqs (4.13) and (4.33), and
adaptive laws given by Eqs (4.14), (4.34) and (4.52). If Vq

n (0) ≤ P is true, then there exist some design
constants σi, τi and ki such that all signals in the closed-loop system are bounded, and the tracking
error can converge to a preset region in finite-time, and the design constants σi, τi and ki satisfy the
following inequalities:


ki > 0, σi > 0, 1 ≤ i ≤ n,
1
τi
> 2, 2 ≤ i ≤ n,

α = 2 min
{
k1, . . . , kn,

1
τ2
− 2, . . . , 1

τn
− 2, σ1(1 − q), . . . , σn(1 − q)

}
,

β = 2q min
{
1, σ1

2 , . . . ,
σn
2 ,

1
τ2
, . . . , 1

τn

}
.

(5.4)

Proof. If Vq
n ≤ P, then z1, . . . , zn, y2, . . . , yn, λ̂1, . . . , λ̂n are bounded. Because yi = ωi−~i−1 and yi values

are bounded, we can get ωi, and ~i−1 which are bounded. According to xi = zi + yi + ~i−1, we can obtain
that xi is bounded. Furthermore, it is known that the control signal u is bounded.
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The time derivative of Vn is given by

V̇n ≤

n∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n∑
j=1

[
1
4
δ2

j +
1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

n∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4
η2

j

]
+

1
2

d2

≤

n∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n∑
j=1

[
1
4

N2
j +

1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

]

+

n∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j +
1
4

M2
j

]
+

1
2

d2

≤

n∑
j=1

[
−k jz2

j −
∣∣∣z j

∣∣∣2q
−
σ j(1 − q)

2
λ̃2

j −
σ j

2
λ̃

2q
j

]

+

n∑
j=2

[
−

1
τ j

y2q
j −

(
1
τ j
− 2

)
y2

j

]
+ C̄,

(5.5)

where

C̄ =

n∑
j=1

(
1
4

N2
j +

1
2

a2
j +

σ j

2
λ2

j +
j
4

+
σ j(1 − q)

2

)
+

n∑
j=2

1
4

M2
j +

1
2

d2.

Accordingly, the above equations can be rewritten as follows:

V̇n ≤ −αVn − βVq
n + C̄, (5.6)

where

α = 2 min
{

k1, . . . , kn,
1
τ2
− 2, · · · ,

1
τn
− 2, σ1(1 − q), . . . , σn(1 − q)

}
,

β = 2q min
{

1,
σ1

2
, . . . ,

σ2
n

2
,

1
τ2
, . . . ,

1
τn

}
.

If Vq
n ≤ P, β ≥ C̄

P and Vn(0) ≤ P, then V̇n ≤ 0. It implies that dVq
n

dt = qVq−1
n V̇n ≤ 0. It can be seen that

Vq
n (t) ≤ P,∀t > 0. Therefore, Eq (5.6) holds. According to Eq (5.6) and Lemma 2, we have the settling

time Tr = 1
α(1−q) ln αV1−q(0)+vβ

vβ . It yields that the closed-loop system exhibits SGPFTS for t ≥ Tr. �

6. Numerical examples

In this section, we present numerical simulations that were conducted by using
MATLAB/SIMULINK. We utilize two numerical examples to provide further illustration of the
efficacy of the proposed control approach.
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Example 1. The first uncertain nonlinear system is selected as follows:

~̇ = −~ + 0.5x2
1 sin (x1t) ,

ẋ1 = x1 + x2 +
x3

2
5 + d1,

ẋ2 = x3 +
x3

3
2 + d2,

ẋ3 = x1x2x3 + q(u) + d3,

y = x1,

(6.1)

where d1 = 2~ sin(t), d2 = 0.1~ cos (x1x3t), and d3 = 0.2~ cos (0.5x2t) − 0.5x1. The desired tracking
trajectory yd(t) = 0.5[sin(t)+ sin(0.5t)]. The dynamic signal is set as ṙ = −r + 2.5x4

1 + 0.625.
The adaptive control algorithm is set as follows:

u = −

(
k3 +

5
2

)
z3 −

‖φ3 (Z3)‖2 z3λ̂3

2a2
3

, (6.2)

~1 = −
1
m

[(
k1 + 1 +

1
2

m2
)

z1 +
‖φ1 (Z1)‖2 z1λ̂1

2a2
1

]
, (6.3)

~2 = −

(
k2 +

5
2

)
z2 −

‖φ2 (Z2)‖2 z2λ̂2

2a2
2

, (6.4)

˙̂λ1 =
‖φ1 (Z1)‖2 z2

1

2a2
1

− σ1λ̂1, (6.5)

˙̂λ2 =
‖φ2 (Z2)‖2 z2

2

2a2
2

− σ2λ̂2, (6.6)

˙̂λ3 =
‖φ3 (Z3)‖2 z2

3

2a2
3

− σ3λ̂3, (6.7)

ω̇2 = −
1
τ2
|y2|

2q−1 sgn (y2) −
1
τ2
|y2| sgn (y2) , (6.8)

ω̇3 = −
1
τ3
|y3|

2q−1 sgn (y3) −
1
τ3
|y3| sgn (y3) , (6.9)

where

z1 = S =
1
2

log
kc(t) + e1

$

kc(t) − e1
$

,

z2 = s2 − ω2,

z3 = s3 − ω3,

Z1 =
[
x̄T

2 , z1, yd, ẏd, $, $̇, kc(t), k̇c(t), r
]T
∈ R10,

Z2 =
[
x̄T

3 , z2, y2, r
]T
∈ R6,

Z3 =
[
x̄T

3 , z3, y3, r
]T
∈ R6,

y2 = ω2 − ~1,
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y3 = ω3 − ~2.

Choosing the PPF as $(t) = 0.7e−3t + 0.1, the time-varying constraint function as kc(t) = 0.7 +

0.2 cos t, and m(t) = 1
kc(t)$(1−tanh2 S ) , the dynamic signal is set as ṙ = −r + 1.5x4

1 + 0.8. Initial values are

set as x1(0) = 0.2, x2(0) = 0.1, x3(0) = 0.15, λ̂1(0) = 0.1, λ̂2(0) = 0.6, λ̂3(0) = 0.3, ω2(0) = 0.1, ω3(0) =

0.2, r(0) = 0.3, ~(0) = 0.1, and l1 = l2 = 10. The design constants are selected as k1 = 2, k2 =

50, a1 = a2 = 1, σ1 = 0.1, σ2 = 0.1, τ2 = 0.3, q = 0.5, p = 3
17 , umin = 0.2, uth = u10

1−δ , δ =
1−p
1+p , and

umin = p1−iumin, i = 1, 2, . . . ,∞.

As depicted in Figures 1, it is evident that the output signal adeptly tracks the desired trajectory,
with the tracking error converging to a predetermined region. Figure 2 illustrates the disparity between
the quantization signal q(u) and the control signal u. The small quantization error and the effective
discretization of the continuous signal are evident from Figure 3. Furthermore, Figure 4 demonstrates
that the updating parameters λ̂1, λ̂2, λ̂3 remain bounded. These observations collectively affirm the
robust performance and stability of the proposed control methodology.

0 5 10 15 20 25 30 35 40 45 50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 1. Output y (solid line) and desired trajectory yd (dashed line).
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Figure 2. Quantization signal q(u) (solid line) and control signal u (dashed line).
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Figure 3. Quantization error ∆q.
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Figure 4. Prescribed performance −kc$ (dotted-dashed line), kc$ (dashed line) and tracking
error e1 (solid line).

Example 2. Consider a ship’s dynamic system; its dynamic equation is described as follows:

v̈ + Jv̇ + l
(
Mv3 + Bv

)
= lq(u) (6.10)

where v stands for the angular velocity of the ship course, q(u) is the input quantization, l , 0,M and B
represent unknown constants of the ship related hydrodynamic coefficients and ship mass, respectively,
and J = 0.2, where we set l = 1.8,M = 0.12, and B = 0.2. Define x1 = v, x2 = ḃ. The ship’s dynamic
system with unmodeled dynamics, input quantization and prescribed performance can be described as
follows:
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~̇ = −~ + 0.5x2

1 sin (x1t) ,
ẋ1 = x2 + 2~ sin(t),
ẋ2 = −0.2x2 − 1.8

(
0.12x3

1 + 0.2x1

)
+ 1.8q(u) + 0.2~ cos (0.5x2t) − 0.5x1,

y = x1.

(6.11)

Choosing the initial values as x1(0) = 0.3, x2(0) = 0.2, λ̂1(0) = 2, λ̂2(0) = 0.5, ω2(0) = 0.1, r(0) =

0.1, and ~(0) = 0.1, and setting the design constants to a1 = a2 = 1, σ1 = 0.1, σ2 = 0.1, τ2 =

0.3, k1 = 2, k2 = 100, q = 0.6, p = 3
17 , umin = 0.2, and l1 = l2 = 10, we chose the desired signal as

yd = 1.5 sin(0.6t) and the auxiliary signal as ṙ = −r + 1.5x4
1 + 0.8. The simulation results are shown

in Figures 5–8. It can be ascertained from Figure 5 that this method has good performance in terms
of the prescribed tracking. Figure 6 shows the difference between the quantization signal q(u) and the
control signal u, and the quantization error is small. Figures 7 and 8 show that the control signal u
and adaptive tuning parameters λ̂1, λ̂2 are bounded.
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Figure 5. Output y (solid line) and desired trajectory yd (dashed line).
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Figure 6. Quantization signal q(u) (solid line) and control signal u (dashed line).
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Figure 7. Quantization error ∆q.
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Figure 8. Prescribed performance −kc$ (dotted-dashed line), kc$ (dashed line) and tracking
error e1 (solid line).

Example 3. To validate the effectiveness of the proposed control scheme in this paper, simulations and
comparisons of different control methods were conducted on the same pure-feedback system with input
quantization and unmodeled dynamics. The proposed finite-time DSC (referred to as FTDSC) in this
paper is compared to the traditional DSC.

A pure-feedback system with input quantization and unmodeled dynamics was evaluated:
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ξ̇ = −ξ + 0.5x2

1 sin (x1t) ,

ẋ1 = x1 + x2 +
x3

2
5 + 2ξ sin(t),

ẋ2 = x1x2 + q(u) + 0.2ξ cos (0.5x2t) − 0.5x1,

y = x1.

(6.12)

In the proposed FTDSC method in this paper, the virtual control law is chosen as

~1 = −
1
m

((
k1 + 1 +

1
2

m2
)

z1 +
‖φ1 (Z1)‖2 z1λ̂1

2a2
1

)
. (6.13)

Then, the control law uFT DS C is applied as follows

uFT DS C = −

(
k2 +

5
2

)
z2 −

‖φ2 (Z2)‖2 z2λ̂2

2a2
2

. (6.14)

We selected the parameters as k1 = 2, k2 = 50, a1 = a2 = 1, σ1 = 0.1, σ2 = 0.1, τ2 = 0.3, q =

0.5, p = 3
17 , umin = 0.2, uth = u10

1−δ , l = 5, and δ =
1−p
1+p .

To ensure a fair comparison in the simulation, based on the pure feedback system described by Eq
(6.12), the virtual control law has been designed as follows

α1 = −
c1z1

µ1
−

z1λ̂‖Ψ(X)‖
2a2

0µ1
. (6.15)

Then, the control law uDS C is designed was follows

u = −u2 tanh
(z2u2

r

)
, (6.16)

where u2 = − α2
1−δ , α2 = −c2z2 − k2l2 (y − x̂1) + ω̇2 − z2.

Similarly, the parameters selected based on the traditional DSC control method were as follows:
k1 = 2, k2 = 2, c1 = 40, c2 = 10, σ = 0.01, τ2 = 0.01, l = 5, a0 = 5, p = 3

17 , umin = 0.2, δ =
1−p
1+p , and

r = 0.2.
We selected the desired signal as yd = 0.5(sin(t) + sin(0.5t)) and the dynamic signal as ṙ = −r +

1.5y4 + 0.8, with the initial values set as x1(0) = 0.1, x2(0) = 0.1, r(0) = 0.1, λ̂(0) = 0.1, ω2(0) = 0.1,
and ξ(0) = 0.1. The comparative simulation results are shown in Figures 9–12.

In Figure 9a, the red solid line represents the desired tracking trajectory yd, the blue dashed line
represents the output signal y in the proposed FTDSC, and the green dashed line represents the output
signal in the traditional DSC method. Figure 9b is a partial enlarged view of Figure 9a. From the
local zoom-in, it can be observed that under both control methods, the output signal y can effectively
track the desired trajectory yd. However, from the local zoom-in plot in (b), it is evident that the
tracking performance of the FTDSC method is superior to the traditional DSC method, with a faster
convergence speed. In Figure 10, the red solid line represents the tracking error y − yd in the FTDSC
method, while the black dashed line represents the tracking error y − yd in the DSC method. It can
be observed from the local magnification that the tracking error in the FTDSC method is smaller. In
Figure 11, in subfigures (a) and (b), the red dashed line represents the quantized signal q(u), and the
blue dashed line represents the control signal u. In Figure 12, the blue dashed line represents the
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quantization error q(u) − u in the FTDSC method, and the red dashed line represents the quantization
error q(u) − u in the traditional DSC method. Combining the local magnification chart in Figure 12,
it can be observed that the FTDSC method has smaller quantization errors than the DSC method,
indicating greater accuracy.
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Figure 9. The output y and its tracking under two methods.
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Figure 10. Tracking error of output y under two methods.
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Figure 11. The control signals u and quantized control signals q(u) under two control
methods.
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Figure 12. The quantization error under two methods.

7. Conclusions

In this paper, a new finite-time adaptive control scheme has been presented for non-affine nonlinear
systems subject to input quantization, unmodeled dynamics and prescribed performance. An invertible
nonlinear mapping has been formulated by leveraging the characteristics of the hyperbolic tangent
function. The development of a novel controller has been achieved through the incorporation of a
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nonlinear filter and the application of Young’s inequality, coupled with an improved DSC strategy. The
issue of “complexity explosion” that is inherent in traditional backstepping is successfully mitigated,
while the problem of “singularity” in finite time is eliminated. Compared with the previous first-order
linear filter, the nonlinear filter reduces the demand on the time constant. Theoretical analysis indicates
that all signals within the controlled process are bounded within finite time, and that the tracking error
of the system can converge to a predefined time-varying region within a finite duration. Simulation
curves substantiate the effectiveness of the proposed design scheme.

Our future work will be aimed at exploring the potential integration of machine learning
technologies, such as reinforcement learning or neural networks, to solve complex system dynamics
and uncertainties. In addition, it will be an important aspect of our future research work to study the
scalability and robustness of the controller under large-scale systems and different operating conditions.
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